ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap

249   0   0.0 ( 0 )
 نشر من قبل Siying Peng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A gyroid structure is a distinct morphology that is triply periodic and consists of minimal isosurfaces containing no straight lines. We have designed and synthesized amorphous silicon (a-Si) mid-infrared gyroid photonic crystals that exhibit a complete bandgap in infrared spectroscopy measurements. Photonic crystals were synthesized by deposition of a-Si/Al2O3 coatings onto a sacrificial polymer scaffold defined by two-photon lithography. We observed a 100% reflectance at 7.5 mum for single gyroids with a unit cell size of 4.5 mum, in agreement with the photonic bandgap position predicted from full-wave electromagnetic simulations, whereas the observed reflection peak shifted to 8 um for a 5.5 mum unit cell size. This approach represents a simulation-fabrication-characterization platform to realize three-dimensional gyroid photonic crystals with well-defined dimensions in real space and tailored properties in momentum space.



قيم البحث

اقرأ أيضاً

182 - W. L. Vos , L. A. Woldering 2015
This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a full and complete 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nan oscale volume (aka a nanobox for light), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.
A fully planar two-dimensional optomechanical crystal formed in a silicon microchip is used to create a structure devoid of phonons in the GHz frequency range. A nanoscale photonic crystal cavity is placed inside the phononic bandgap crystal in order to probe the properties of the localized acoustic modes. By studying the trends in mechanical damping, mode density, and optomechanical coupling strength of the acoustic resonances over an array of structures with varying geometric properties, clear evidence of a complete phononic bandgap is shown.
We report for the first time the bandgap engineering of Tamm plasmon photonic crystals - Tamm plasmon structures of which the metalic layer is periodically patterned into lattice of subwavelength period. By adopting a double period design, we evidenc ed experimentally a complete photonic bandgap up to $150,nm$ in the telecom range. Moreover, such design offers a great flexibility to tailor on-demand, and independently, the band-gap size from $30,nm$ to $150,nm$ and its spectral position within $50,nm$. Finally, by implementing a defect cavity within the Tamm plasmon photonic crystal, an ultimate cavity of $1.6mu m$ supporting a single highly confined Tamm mode is experimentally demonstrated. All experimental results are in perfect agreement with numerical calculations. Our results suggests the possibility to engineer novel band dispersion with surface modes of hybrid metalic/dielectric structures, thus open the way to Tamm plasmon towards applications in topological photonics, metamaterials and parity symmetry physics.
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structu ral duty cycle, DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with local maxima appearing in empty layers. In the model with narrow channels (around DC =0.25), fundamental and higher-order solitons exist only in the first finite bandgap, where they are stable, despite the fact that they also feature the inverted shape.
We present ultrafast optical switching experiments on 3D photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order B ragg diffraction where the photonic band gap is predicted. We find good experimental switching conditions for free-carrier plasma frequencies between 0.3 and 0.7 times the optical frequency: we thus observe a large frequency shift of up to D omega/omega= 1.5% of all spectral features including the peak that corresponds to the photonic band gap. We deduce a corresponding large refractive index change of Dn_Si/n_Si= 2.0% and an induced absorption length that is longer than the sample thickness. We observe a fast decay time of 21 ps, which implies that switching could potentially be repeated at GHz rates. Such a high switching rate is relevant to future switching and modulation applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا