ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

147   0   0.0 ( 0 )
 نشر من قبل Willem Vos
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a full and complete 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka a nanobox for light), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.

قيم البحث

اقرأ أيضاً

109 - K. H. Madsen , P. Lodahl 2012
We present detuning-dependent spectral and decay-rate measurements to study the difference between spectral and dynamical properties of single quantum dots embedded in micropillar and photonic-crystal cavities. For the micropillar cavity, the dynamic s is well described by the dissipative Jaynes-Cummings model, while systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to coupling of other exciton lines to the cavity and interference of different propagation paths towards the detector of the fields emitted by the quantum dot. In contrast, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities we observe an anti crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of strong coupling. However, time-resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multiexcition complexes giving rise to collective emission effects.
A gyroid structure is a distinct morphology that is triply periodic and consists of minimal isosurfaces containing no straight lines. We have designed and synthesized amorphous silicon (a-Si) mid-infrared gyroid photonic crystals that exhibit a compl ete bandgap in infrared spectroscopy measurements. Photonic crystals were synthesized by deposition of a-Si/Al2O3 coatings onto a sacrificial polymer scaffold defined by two-photon lithography. We observed a 100% reflectance at 7.5 mum for single gyroids with a unit cell size of 4.5 mum, in agreement with the photonic bandgap position predicted from full-wave electromagnetic simulations, whereas the observed reflection peak shifted to 8 um for a 5.5 mum unit cell size. This approach represents a simulation-fabrication-characterization platform to realize three-dimensional gyroid photonic crystals with well-defined dimensions in real space and tailored properties in momentum space.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quant um dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipole s with a polymer we calculate the partition function of the coupled light-matter system and demonstrate it exhibits a second order phase transition between a bunched state of isotropic orientations and a stretched one with all the dipoles aligned. Such a transition manifests itself as an intensity-dependent shift of the polariton mode resonance. Our work, lying at the crossroad between cavity quantum electrodynamics and quantum optomechanics, is a step forward in the on-going quest to understand how strong coupling can be exploited to influence matter internal degrees of freedom.
We performed an experimental study of coupled optical cavity arrays in a photonic crystal platform. We find that the coupling between the cavities is significantly larger than the fabrication-induced disorder in the cavity frequencies. Satisfying thi s condition is necessary for using such cavity arrays to generate strongly correlated photons, which has potential application to the quantum simulation of many-body systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا