ﻻ يوجد ملخص باللغة العربية
This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a full and complete 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka a nanobox for light), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.
We present detuning-dependent spectral and decay-rate measurements to study the difference between spectral and dynamical properties of single quantum dots embedded in micropillar and photonic-crystal cavities. For the micropillar cavity, the dynamic
A gyroid structure is a distinct morphology that is triply periodic and consists of minimal isosurfaces containing no straight lines. We have designed and synthesized amorphous silicon (a-Si) mid-infrared gyroid photonic crystals that exhibit a compl
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quant
We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipole
We performed an experimental study of coupled optical cavity arrays in a photonic crystal platform. We find that the coupling between the cavities is significantly larger than the fabrication-induced disorder in the cavity frequencies. Satisfying thi