ﻻ يوجد ملخص باللغة العربية
Using the F-theory realization, we identify a subclass of 6d (1,0) SCFTs whose compactification on a Riemann surface leads to N = 1 4d SCFTs where the moduli space of the Riemann surface is part of the moduli space of the theory. In particular we argue that for a special case of these theories (dual to M5 branes probing ADE singularities), we obtain 4d N = 1 theories whose space of marginal deformations is given by the moduli space of flat ADE connections on a Riemann surface.
N=1, d=4 superconformal group is studied and its representations are discussed. Under superconformal transformations, left invariant derivatives and some class of superfields, including supercurrents, are shown to follow these representations. In oth
We explore consequences of the Averaged Null Energy Condition (ANEC) for scaling dimensions $Delta$ of operators in four-dimensional $mathcal{N}=1$ superconformal field theories. We show that in many cases the ANEC bounds are stronger than the corres
We compute the holographic entanglement entropy in the gravity with higher curvature terms dual to d=4 N=2 SCFTs in F-theory using the method proposed in arXiv:1011.5819. The log term of this entanglement entropy reproduces the A-type anomaly of the
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(barphiphi)^2$ theory may be computed semiclassically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$, and this was verified to two
Motivated by applications to soft supersymmetry breaking, we revisit the expansion of the Seiberg-Witten solution around the multi-monopole point on the Coulomb branch of pure $SU(N)$ $mathcal{N}=2$ gauge theory in four dimensions. At this point $N-1