ﻻ يوجد ملخص باللغة العربية
We explore consequences of the Averaged Null Energy Condition (ANEC) for scaling dimensions $Delta$ of operators in four-dimensional $mathcal{N}=1$ superconformal field theories. We show that in many cases the ANEC bounds are stronger than the corresponding unitarity bounds on $Delta$. We analyze in detail chiral operators in the $(frac12 j,0)$ Lorentz representation and prove that the ANEC implies the lower bound $Deltagefrac32j$, which is stronger than the corresponding unitarity bound for $j>1$. We also derive ANEC bounds on $(frac12 j,0)$ operators obeying other possible shortening conditions, as well as general $(frac12 j,0)$ operators not obeying any shortening condition. In both cases we find that they are typically stronger than the corresponding unitarity bounds. Finally, we elucidate operator-dimension constraints that follow from our $mathcal{N}=1$ results for multiplets of $mathcal{N}=2,4$ superconformal theories in four dimensions. By recasting the ANEC as a convex optimization problem and using standard semidefinite programming methods we are able to improve on previous analyses in the literature pertaining to the nonsupersymmetric case.
Using the F-theory realization, we identify a subclass of 6d (1,0) SCFTs whose compactification on a Riemann surface leads to N = 1 4d SCFTs where the moduli space of the Riemann surface is part of the moduli space of the theory. In particular we arg
We study the constraints of superconformal symmetry on codimension two defects in four-dimensional superconformal field theories. We show that the one-point function of the stress tensor and the two-point function of the displacement operator are rel
We present a wormhole solution in four dimensions. It is a solution of an Einstein Maxwell theory plus charged massless fermions. The fermions give rise to a negative Casimir-like energy, which makes the wormhole possible. It is a long wormhole that
Supersymmetric gauge theories in four dimensions can display interesting non-perturbative phenomena. Although the superpotential dynamically generated by these phenomena can be highly nontrivial, it can often be exactly determined. We discuss some ge
We formulate four-dimensional conformal gravity with (Anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large