ترغب بنشر مسار تعليمي؟ اضغط هنا

The Universal Deformation of the Witt Ring Scheme

56   0   0.0 ( 0 )
 نشر من قبل Christopher Deninger
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the universal deformation over reduced base rings of the Witt ring scheme enhanced by a Frobenius lift and Verschiebung. It agrees with a q-deformation earlier introduced by the second author, for which we also give a simpler description. In the appendix we discuss a Witt vector theory for ind-rings which may be of independent interest.



قيم البحث

اقرأ أيضاً

56 - Young-Tak Oh 2004
In this paper, we construct a $q$-deformation of the Witt-Burnside ring of a profinite group over a commutative ring, where $q$ ranges over the set of integers. When $q=1$, it coincides with the Witt-Burnside ring introduced by A. Dress and C. Sieben eicher (Adv. Math. {70} (1988), 87-132). To achieve our goal we first show that there exists a $q$-deformation of the necklace ring of a profinite group over a commutative ring. As in the classical case, i.e., the case $q=1$, q-deformed Witt-Burnside rings and necklace rings always come equipped with inductions and restrictions. We also study their properties. As a byproduct, we prove a conjecture due to Lenart (J. Algebra. 199 (1998), 703-732). Finally, we classify $mathbb W_G^q$ up to strict natural isomorphism in case where $G$ is an abelian profinite group.
68 - Vadim Schechtman 2020
The rings of $p$-typical Witt vectors are interpreted as spaces of vanishing cycles for some perverse sheaves over a disc. This allows to localize an isomorphism emerging in Drinfelds theory of prismatization [Dr], Prop. 3.5.1, namely to express it a s an integral of a standard exact triangle on the disc.
88 - Young-Tak Oh 2012
The purpose of this this paper is to generalize the functors arising from the theory of Witt vectors duto to Cartier. Given a polynomial $g(q)in mathbb Z[q]$, we construct a functor ${overline {W}}^{g(q)}$ from the category of $mathbb Z[q]$-algebras to that of commutative rings. When $q$ is specialized into an integer $m$, it produces a functor from the category of commutative rings with unity to that of commutative rings. In a similar way, we also construct several functors related to ${overline { W}}^{g(q)}$. Functorial and structural properties such as induction, restriction, classification and unitalness will be investigated intensively.
We describe infinite-dimensional Leibniz algebras whose associated Lie algebra is the Witt algebra and we prove the triviality of low-dimensional Leibniz cohomology groups of the Witt algebra with the coefficients in itself.
224 - V.A. Bovdi , A.B. Konovalov 2007
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerles conjecture on prime graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا