ﻻ يوجد ملخص باللغة العربية
In this paper, we construct a $q$-deformation of the Witt-Burnside ring of a profinite group over a commutative ring, where $q$ ranges over the set of integers. When $q=1$, it coincides with the Witt-Burnside ring introduced by A. Dress and C. Siebeneicher (Adv. Math. {70} (1988), 87-132). To achieve our goal we first show that there exists a $q$-deformation of the necklace ring of a profinite group over a commutative ring. As in the classical case, i.e., the case $q=1$, q-deformed Witt-Burnside rings and necklace rings always come equipped with inductions and restrictions. We also study their properties. As a byproduct, we prove a conjecture due to Lenart (J. Algebra. 199 (1998), 703-732). Finally, we classify $mathbb W_G^q$ up to strict natural isomorphism in case where $G$ is an abelian profinite group.
We determine the universal deformation over reduced base rings of the Witt ring scheme enhanced by a Frobenius lift and Verschiebung. It agrees with a q-deformation earlier introduced by the second author, for which we also give a simpler description
We study the q-commutative power series ring R:=k_q[[x_1,...,x_n]], defined by the relations x_ix_j = q_{ij}x_j x_i, for multiplicatively antisymmetric scalars q_{ij} in a field k. Our results provide a detailed account of prime ideal structure for a
We complement our previous computation of the Chow-Witt rings of classifying spaces of special linear groups by an analogous computation for the general linear groups. This case involves discussion of non-trivial dualities. The computation proceeds a
We continue the first and second authors study of $q$-commutative power series rings $R=k_q[[x_1,ldots,x_n]]$ and Laurent series rings $L=k_q[[x^{pm 1}_1,ldots,x^{pm 1}_n]]$, specializing to the case in which the commutation parameters $q_{ij}$ are a
The ring of classic Witt vectors is a fundamental object in mixed characteristic commutative algebra which has many applications in number theory. There is a significant generalization due to Dress and Siebeneicher which for any profinite group G pro