ﻻ يوجد ملخص باللغة العربية
Fourier-positivity, i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position (r) space. They are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical Fourier-positivity constraints on the limit r -> 0 behavior of the dipole amplitudes, we identify the common origin of the violation of Fourier-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r^{2+epsilon}, epsilon>0, softer, even slightly, than color transparency. Fourier-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant alpha(r).
In the high-energy domain, gluon transverse-momentum dependent distributions in nuclei obey constraints coming from positivity and unitarity of the colorless QCD dipole distributions through Fourier-Bessel transformations. Using mathematical properti
Characterizing in a constructive way the set of real functions whose Fourier transforms are positive appears to be yet an open problem. Some sufficient conditions are known but they are far from being exhaustive. We propose two constructive sets of n
The consistency of the EFT of two interacting spin-2 fields is checked by applying forward limit positivity bounds on the scattering amplitudes to exclude the region of parameter space devoid of a standard UV completion. We focus on two classes of th
Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the Dirac comb distribution and of its tensor products i
The relation between the trace and R-current anomalies in supersymmetric theories implies that the U$(1)_RF^2$, U$(1)_R$ and U$(1)_R^3$ anomalies which are matched in studies of N=1 Seiberg duality satisfy positivity constraints. Some constraints are