ترغب بنشر مسار تعليمي؟ اضغط هنا

Positivity Constraints on Anomalies in Supersymmetric Gauge Theories

82   0   0.0 ( 0 )
 نشر من قبل Andrei Johansen
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The relation between the trace and R-current anomalies in supersymmetric theories implies that the U$(1)_RF^2$, U$(1)_R$ and U$(1)_R^3$ anomalies which are matched in studies of N=1 Seiberg duality satisfy positivity constraints. Some constraints are rigorous and others conjectured as four-dimensional generalizations of the Zamolodchikov $c$-theorem. These constraints are tested in a large number of N=1 supersymmetric gauge theories in the non-Abelian Coulomb phase, and they are satisfied in all renormalizable models with unique anomaly-free R-current, including those with accidental symmetry. Most striking is the fact that the flow of the Euler anomaly coefficient, $a_{UV}-a_{IR}$, is always positive, as conjectured by Cardy.



قيم البحث

اقرأ أيضاً

We analyse the relation between anomalies in their manifestly supersymmetric formulation in superspace and their formulation in Wess-Zumino (WZ) gauges. We show that there is a one-to-one correspondence between the solutions of the cohomology problem in the two formulations and that they are related by a particular choice of a superspace counterterm (scheme). Any apparent violation of $Q$-supersymmetry is due to an explicit violation by the counterterm which defines the scheme equivalent to the WZ gauge. It is therefore removable.
We study N=1 supersymmetric SU(2) gauge theory in four dimensions with a large number of massless quarks. We argue that effective superpotentials as a function of local gauge-invariant chiral fields should exist for these theories. We show that altho ugh the superpotentials are singular, they nevertheless correctly describe the moduli space of vacua, are consistent under RG flow to fewer flavors upon turning on masses, and also reproduce by a tree-level calculation the higher-derivative F-terms calculated by Beasely and Witten (hep-th/0409149) using instanton methods. We note that this phenomenon can also occur in supersymmetric gauge theories in various dimensions.
68 - Tadahito Nakajima 2001
We calculate conformal anomalies in noncommutative gauge theories by using the path integral method (Fujikawas method). Along with the axial anomalies and chiral gauge anomalies, conformal anomalies take the form of the straightforward Moyal deformat ion in the corresponding conformal anomalies in ordinary gauge theories. However, the Moyal star product leads to the difference in the coefficient of the conformal anomalies between noncommutative gauge theories and ordinary gauge theories. The $beta$ (Callan-Symanzik) functions which are evaluated from the coefficient of the conformal anomalies coincide with the result of perturbative analysis.
165 - W. Gu , E. Sharpe , H. Zou 2020
In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU(k)/Z_k, SO(2k)/Z_2, Sp(2k)/Z_2, E_6/Z_3, and E_7/Z_2 for various discrete theta angles, both directly in the gauge theory and also in nonabelian mirrors, extending a classification begun in previous work. We find in each case that there are supersymmetric vacua for precisely one value of the discrete theta angle, and no supersymmetric vacua for other values, hence supersymmetry is broken in the IR for most discrete theta angles. Furthermore, for the one distinguished value of the discrete theta angle for which supersymmetry is unbroken, the theory has as many twisted chiral multiplet degrees of freedom in the IR as the rank. We take this opportunity to further develop the technology of nonabelian mirrors to discuss how the mirror to a G gauge theory differs from the mirror to a G/K gauge theory for K a subgroup of the center of G. In particular, the discrete theta angles in these cases are considerably more intricate than those of the pure gauge theories studied in previous papers, so we discuss the realization of these more complex discrete theta angles in the mirror construction. We find that discrete theta angles, both in the original gauge theory and their mirrors, are intimately related to the descriptions of centers of universal covering groups as quotients of weight lattices by root sublattices. We perform numerous consistency checks, comparing results against basic group-theoretic relations as well as with decomposition, which describes how two-dimensional theories with one-form symmetries (such as pure gauge theories with nontrivial centers) decompose into disjoint unions, in this case of pure gauge theories with quotiented gauge groups and discrete theta angles.
Seiberg-Witten solutions of four-dimensional supersymmetric gauge theories possess rich but involved integrable structures. The goal of this paper is to show that an isomonodromy problem provides a unified framework for understanding those various fe atures of integrability. The Seiberg-Witten solution itself can be interpreted as a WKB limit of this isomonodromy problem. The origin of underlying Whitham dynamics (adiabatic deformation of an isospectral problem), too, can be similarly explained by a more refined asymptotic method (multiscale analysis). The case of $N=2$ SU($s$) supersymmetric Yang-Mills theory without matter is considered in detail for illustration. The isomonodromy problem in this case is closely related to the third Painleve equation and its multicomponent analogues. An implicit relation to $ttbar$ fusion of topological sigma models is thereby expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا