ﻻ يوجد ملخص باللغة العربية
The relation between the trace and R-current anomalies in supersymmetric theories implies that the U$(1)_RF^2$, U$(1)_R$ and U$(1)_R^3$ anomalies which are matched in studies of N=1 Seiberg duality satisfy positivity constraints. Some constraints are rigorous and others conjectured as four-dimensional generalizations of the Zamolodchikov $c$-theorem. These constraints are tested in a large number of N=1 supersymmetric gauge theories in the non-Abelian Coulomb phase, and they are satisfied in all renormalizable models with unique anomaly-free R-current, including those with accidental symmetry. Most striking is the fact that the flow of the Euler anomaly coefficient, $a_{UV}-a_{IR}$, is always positive, as conjectured by Cardy.
We analyse the relation between anomalies in their manifestly supersymmetric formulation in superspace and their formulation in Wess-Zumino (WZ) gauges. We show that there is a one-to-one correspondence between the solutions of the cohomology problem
We study N=1 supersymmetric SU(2) gauge theory in four dimensions with a large number of massless quarks. We argue that effective superpotentials as a function of local gauge-invariant chiral fields should exist for these theories. We show that altho
We calculate conformal anomalies in noncommutative gauge theories by using the path integral method (Fujikawas method). Along with the axial anomalies and chiral gauge anomalies, conformal anomalies take the form of the straightforward Moyal deformat
In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU(k)/Z_k, SO(2k)/Z_2, Sp(2k)/Z_2, E_6/Z_3, and E_7/Z_2 for various discrete theta angles, both directly
Seiberg-Witten solutions of four-dimensional supersymmetric gauge theories possess rich but involved integrable structures. The goal of this paper is to show that an isomonodromy problem provides a unified framework for understanding those various fe