ﻻ يوجد ملخص باللغة العربية
The consistency of the EFT of two interacting spin-2 fields is checked by applying forward limit positivity bounds on the scattering amplitudes to exclude the region of parameter space devoid of a standard UV completion. We focus on two classes of theories that have the highest possible EFT cutoff, namely those theories modelled on ghost-free interacting theories of a single massive spin-2 field. We find that the very existence of interactions between the spin-2 fields implies more stringent bounds on all the parameters of the EFT, even on the spin-2 self-interactions. This arises for two reasons. First, with every new field included in the low-energy EFT, comes the `knowledge of an extra pole to be subtracted, hence strengthening the positivity bounds. Second, while adding new fields increases the number of free parameters from the new interactions, this is rapidly overcome by the increased number of positivity bounds for different possible scattering processes. We also discuss how positivity bounds appear to favour relations between operators that effectively raise the cutoff of the EFT.
We explore the effective field theory for single and multiple interacting pseudo-linear spin-2 fields. By applying forward limit positivity bounds, we show that among the parameters contributing to elastic tree level scattering amplitude, there is no
We consider the effective field theory of multiple interacting massive spin-2 fields. We focus on the case where the interactions are chosen so that the cutoff is the highest possible, and highlight two distinct classes of theories. In the first clas
We derive analyticity constraints on a nonlinear ghost-free effective theory of a massive spin-2 particle known as pseudo-linear massive gravity, and on a generalized theory of a massive spin-1 particle, both of which provide simple IR completions of
The presence of a massless spin-2 field in an effective field theory results in a $t$-channel pole in the scattering amplitudes that precludes the application of standard positivity bounds. Despite this, recent arguments based on compactification to
The relation between the trace and R-current anomalies in supersymmetric theories implies that the U$(1)_RF^2$, U$(1)_R$ and U$(1)_R^3$ anomalies which are matched in studies of N=1 Seiberg duality satisfy positivity constraints. Some constraints are