ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotating system for four-dimensional transverse rms-emittance measurements

73   0   0.0 ( 0 )
 نشر من قبل Lars Groening
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the removal of inter-plane correlations to reduce the projected emittances. A dedicated ROtating System for Emittance measurements (ROSE) has been proposed, developed, and successfully commissioned to fully determine the four-dimensional beam matrix. This device has been used at the High Charge injector (HLI) at GSI using a beam line which is composed of a skew quadrupole triplet, a normal quadrupole doublet, and ROSE. Mathematical algorithms, measurements, and results for ion beams of 83Kr13+ at 1.4 MeV/u are reported in this paper.



قيم البحث

اقرأ أيضاً

Proposed fourth generation light sources using SASE FELs to generate short pulse, coherent, X-rays require demonstration of high brightness electron sources. The Gun Test Facility (GTF) at SLAC was built to test high brightness sources for the propos ed Linac Coherent Light Source at SLAC. The transverse emittance measurements are made at nearly 30 MeV by measuring the spot size on a YAG screen using the quadrupole scan technique. The emittance was measured to vary from 1 to 3.5 mm-mrad as the charge is increased from 50 to 350 pC using a laser pulse width of 2 ps FWHM. The measurements are in good agreement with simulation results using the LANL version of PARMELA.
A system for online measurement of the transverse beam emittance was developed. It is named $^{4}$PrOB$varepsilon$aM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multi ple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The $^{4}$PrOB$varepsilon$aM system was deployed for characterization studies of the 18~MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.
298 - Lars Groening 2011
For injection of beams into circular machines with different horizontal and vertical emittance acceptance, the injection efficiency can be increased if these beams are flat, i.e. if they feature unequal transverse emittances. Generation of flat elect ron beams is well known and has been demonstrated already in beam experiments. It was proposed also for ion beams that were generated in an Electron Cyclotron-Resonance (ECR) source. We introduce an extension of the method to beams that underwent charge state stripping without requiring their generation inside an ECR source. Results from multi-particle simulations are presented to demonstrate the validity of the method.
473 - C. Xiao , X.N. Du , L. Groening 2020
A dedicated device to fully determine the four-dimensional beam matrix, called ROSE (ROtating System for Emittance measurements) was successfully commissioned. Results obtained with 83Kr13+ at 1.4 MeV/u are reported in Phys. Rev. Accel. Beams 19, 072 802 (2016). Coupled moments were determined with an accuracy of about 10%, which is sufficiently low to reliably determine a lattice which could decouple the beam. However, the remaining uncertainty on the corresponding eigen emittances was still considerable high. The present paper reports on improvement of the evaluation procedure which lowers the inaccuracy of measured eigen emittances significantly to the percent level. The method is based on trimming directly measured data within their intrinsic measurement resolution such that the finally resulting quantity is determined with high precision.
85 - Ihar Lobach 2020
Generally, turn-to-turn power fluctuations of incoherent spontaneous synchrotron radiation in a storage ring depend on the 6D phase-space distribution of the electron bunch. In some cases, if only one parameter of the distribution is unknown, this pa rameter can be determined from the measured magnitude of these power fluctuations. In this Letter, we report an absolute measurement (no free parameters or calibration) of a small vertical emittance (5--15 nm rms) of a flat beam by this method, under conditions, when it is unresolvable by a conventional synchrotron light beam size monitor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا