ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse emittance measurements on an S-band photoinjector rf electron gun

60   0   0.0 ( 0 )
 نشر من قبل J. E. Clendenin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proposed fourth generation light sources using SASE FELs to generate short pulse, coherent, X-rays require demonstration of high brightness electron sources. The Gun Test Facility (GTF) at SLAC was built to test high brightness sources for the proposed Linac Coherent Light Source at SLAC. The transverse emittance measurements are made at nearly 30 MeV by measuring the spot size on a YAG screen using the quadrupole scan technique. The emittance was measured to vary from 1 to 3.5 mm-mrad as the charge is increased from 50 to 350 pC using a laser pulse width of 2 ps FWHM. The measurements are in good agreement with simulation results using the LANL version of PARMELA.

قيم البحث

اقرأ أيضاً

Thermal emittance and quantum efficiency (QE) are key figures of merit of photocathodes, and their uniformity is critical to high-performance photoinjectors. Several QE mapping technologies have been successfully developed; however, there is still a dearth of information on thermal emittance maps. This is because of the extremely time-consuming procedure to gather measurements by scanning a small beam across the cathode with fine steps. To simplify the mapping procedure, and to reduce the time required to take measurements, we propose a new method that requires only a single scan of the solenoid current to simultaneously obtain thermal emittance and QE distribution by using a pattern beam with multiple beamlets. In this paper, its feasibility has been confirmed by both beam dynamics simulation and theoretical analysis. The method has been successfully demonstrated in a proof-of-principle experiment using an L-band radiofrequency photoinjector with a cesium telluride cathode. In the experiment, seven beamlets were generated from a microlens array system and their corresponding thermal emittance and QE varied from 0.93 to 1.14 $mu$m/mm and from 4.6 to 8.7%, respectively. We also discuss the limitations and future improvements of the method in this paper.
Over the last years, the generation and acceleration of ultra-short, high quality electron beams has attracted more and more interest in accelerator science. Electron bunches with these properties are necessary to operate and test novel diagnostics a nd advanced high gradient accelerating schemes such as plasma accelerators or dielectric laser accelerators. Furthermore, several medical and industrial applications require high-brightness electron beams. The dedicated R&D facility ARES at DESY will provide such probe beams in the upcoming years. After the setup of the normal-conducting RF photoinjector and linear accelerating structures, ARES successfully started the beam commissioning of the RF gun. This paper gives an overview of the ARES photoinjector setup and summarizes the results of the gun commissioning process. The quality of the first generated electron beams is characterized in terms of charge, momentum, momentum spread and beam size. Additionally, the dependencies of the beam parameters on RF settings are investigated. All measurement results of the characterized beams fulfill the requirements to operate the ARES linac with this RF photoinjector.
CW photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic X-ray free electron lasers, high brightness hadron beams, o r a new generation of microchip production. In this letter we report on the record-performing superconducting RF electron gun with $textrm{CsK}_{2}textrm{Sb}$ photocathode. The gun is generating high charge electron bunches (up to 10 nC/bunch) and low transverse emittances, while operating for months with a single photocathode. This achievement opens a new era in generating high-power beams with a very high average brightness.
72 - C. Xiao , M. Maier , X.N. Du 2016
Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the removal of inter-plane correlations to reduce the projected emittances. A dedicated ROtating System for Emittance measurements (ROSE) has been proposed, developed, and successfully commissioned to fully determine the four-dimensional beam matrix. This device has been used at the High Charge injector (HLI) at GSI using a beam line which is composed of a skew quadrupole triplet, a normal quadrupole doublet, and ROSE. Mathematical algorithms, measurements, and results for ion beams of 83Kr13+ at 1.4 MeV/u are reported in this paper.
Polarized electron beams are now in routine use in particle accelerators for nuclear and high energy physics experiments. These beams are presently produced by dc-biased photoelectron sources combined with rf chopping and bunching systems with inhere ntly high transverse emittances. Low emittances can be produced with an rf gun, but the vacuum environment has until now been considered too harsh to support a negative electron affinity GaAs photocathode. We propose to significantly improve the vacuum conditions by adapting a PWT rf photoinjector to achieve reasonable cathode emission rates and lifetimes. This adaptation can also be combined with special optics that will result in a flat beam with a normalized rms emittance in the narrow dimension that may be as low as 10-8 m.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا