ﻻ يوجد ملخص باللغة العربية
We present the optical spectra of 338 nearby M dwarfs, and compute their spectral types, effective temperatures ($T_{mathrm{eff}}$), and radii. Our spectra have been obtained using several optical spectrometers with spectral resolutions that range from 1200 to 10000. As many as 97% of the observed M-type dwarfs have a spectral type of M3-M6, with a typical error of 0.4 sub-type, among which the spectral types M4-M5 are the most common. We infer the $T_{mathrm{eff}}$ of our sample by fitting our spectra with theoretical spectra from the PHOENIX model. Our inferred $T_{mathrm{eff}}$ is calibrated with the optical spectra of M dwarfs whose $T_{mathrm{eff}}$ have been well determined with the calibrations that are supported by previous interferometric observations. Our fitting procedures utilize the VO absorption band (7320-7570 {AA}) and the optical region (5000-8000 {AA}), yielding typical errors of 128 K (VO band) and 85 K (optical region). We also determine the radii of our sample from their spectral energy distributions (SEDs). We find most of our sample stars have radii of $<$ 0.6 $R_odot$, with the average error being 3%. Our catalog enables efficient sample selection for exoplanet surveys around nearby M-type dwarfs.
The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520--171
The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target samp
M dwarfs are prominent targets of planet search projects, and their chemical composition is crucial to understanding the formation process or interior of orbiting exoplanets. However, measurements of elemental abundances of M dwarfs have been limited
Aims. In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods. A new method is presented that makes use of the information of 4104 lines in the 53
Context. High-contrast imaging is currently the only available technique for the study of the thermodynamical and compositional properties of exoplanets in long-period orbits. The SPICES project is a coronagraphic space telescope dedicated to the spe