ﻻ يوجد ملخص باللغة العربية
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these mixed one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-known matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of integrating out heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, textit{i.e.} to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE)
In this paper we present the complete one-loop matching conditions, up to dimension-six operators of the Standard Model effective field theory, resulting by integrating out the two scalar leptoquarks $S_{1}$ and $S_{3}$. This allows a phenomenologica
Transverse momentum dependent parton distribution functions (TMDPDFs) provide a unique probe of the three-dimensional spin structure of hadrons. We construct spin-dependent quasi-TMDPDFs that are amenable to lattice QCD calculations and that can be u
Perturbative matching relates the parton quasi-distributions, defined by Euclidean correlators at finite hadron momenta, to the light-cone distributions which are accessible in experiments. Previous matching calculations have exclusively focused on t
We consider tubular neighborhood of an arbitrary submanifold embedded in a (pseudo-)Riemannian manifold. This can be described by Fermi normal coordinates (FNC) satisfying certain conditions as described by Florides and Synge in cite{FS}. By generali