ﻻ يوجد ملخص باللغة العربية
The theory of stable pairs in the derived category yields an enumerative geometry of curves in 3-folds. We evaluate the equivariant vertex for stable pairs on toric 3-folds in terms of weighted box counting. In the toric Calabi-Yau case, the result simplifies to a new form of pure box counting. The conjectural equivalence with the DT vertex predicts remarkable identities. The equivariant vertex governs primary insertions in the theory of stable pairs for toric varieties. We consider also the descendent vertex and conjecture the complete rationality of the descendent theory for stable pairs.
For a nonsingular projective 3-fold $X$, we define integer invariants virtually enumerating pairs $(C,D)$ where $Csubset X$ is an embedded curve and $Dsubset C$ is a divisor. A virtual class is constructed on the associated moduli space by viewing a
We define the BPS invariants of Gopakumar-Vafa in the case of irreducible curve classes on Calabi-Yau 3-folds. The main tools are the theory of stable pairs in the derived category and Behrends constructible function approach to the virtual class. We
For a K3 surface S, we study motivic invariants of stable pairs moduli spaces associated to 3-fold thickenings of S. We conjecture suitable deformation and divisibility invariances for the Betti realization. Our conjectures, together with earlier cal
We prove the rationality of the descendent partition function for stable pairs on nonsingular toric 3-folds. The method uses a geometric reduction of the 2- and 3-leg descendent vertices to the 1-leg case. As a consequence, we prove the rationality o
Using new explicit formulas for the stationary GW/PT descendent correspondence for nonsingular projective toric 3-folds, we show that the correspondence intertwines the Virasoro constraints in Gromov-Witten theory for stable maps with the Virasoro co