ﻻ يوجد ملخص باللغة العربية
The universal aspects of atom-dimer elastic collisions are investigated within the framework of Faddeev equations. The two-body interactions between the neutral atoms are approximated by the separable potential approach. Our analysis considers a pure van der Waals potential tail as well as soft-core van der Waals interactions permitting us in this manner to address the universally general features of atom-dimer resonant spectra. In particular, we show that the atom-dimer resonances are solely associated with the {it excited} Efimov states. Furthermore, the positions of the corresponding resonances for a soft-core potentials with more than 5 bound states are in good agreement with the corresponding results from an infinitely deep pure van der Waals tail potential.
We study the collisional properties of an ultracold mixture of cesium atoms and dimers close to a Feshbach resonance near 550G in the regime of positive $s$-wave scattering lengths. We observe an atom-dimer loss resonance that is related to Efimovs s
Atomistic van der Waals heterostacks are ideal systems for high-temperature exciton condensation because of large exciton binding energies and long lifetimes. Charge transport and electron energy-loss spectroscopy showed first evidence of excitonic m
We consider thermodynamics of the van der Waals fluid of quantum systems. We derive general relations of thermodynamic functions and parameters of any ideal gas and the corresponding van der Waals fluid. This provides unambiguous generalization of th
We investigate universal behavior in elastic atom-dimer scattering below the dimer breakup threshold calculating the atom-dimer effective-range function $akcotdelta$. Using the He-He system as a reference, we solve the Schrodinger equation for a fami
Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron unce