ﻻ يوجد ملخص باللغة العربية
NaFeAs belongs to a class of Fe-based superconductors which parent compounds show separated structural and magnetic transitions. Effects of the structural transition on spin dynamics therefore can be investigated separately from the magnetic transition. A plateau in dynamic spin response is observed in a critical region around the structural transition temperature T_S. It is interpreted as due to the stiffening of spin fluctuations along the in-plane magnetic hard axis due to the dxz and dyz orbital ordering. The appearance of anisotropic spin dynamics in the critical region above the T_S at T* offers a dynamic magnetic scattering mechanism for anisotropic electronic properties in the commonly referred nematic phase.
We use angle-resolved photoemission spectroscopy to study twinned and detwinned iron pnictide compound NaFeAs. Distinct signatures of electronic reconstruction are observed to occur at the structural (TS) and magnetic (TSDW) transitions. At TS, C4 ro
We have used Resonant Inelastic X-ray Scattering (RIXS) and dynamical susceptibility calculations to study the magnetic excitations in NaFe$_{1-x}$Co$_x$As (x = 0, 0.03, and 0.08). Despite a relatively low ordered magnetic moment, collective magnetic
We use point contact spectroscopy to probe $rm{AEFe_2As_2}$ ($rm{AE=Ca, Sr, Ba}$) and $rm{Fe_{1+y}Te}$. For $rm{AE=Sr, Ba}$ we detect orbital fluctuations above $T_S$ while for AE=Ca these fluctuations start below $T_S$. Co doping preserves the orbit
We present results of transport and magnetic properties and heat capacity measurements on polycrystalline CeFeAsO, PrFeAsO, and NdFeAsO. These materials undergo structural phase transitions, spin density wave-like magnetic ordering of small moments o
We report the preparation of Mg$_{1-x}$B$_{2}$ (0$le$x$le$0.5) compounds with the nominal compositions. Single phase MgB$_{2}$ was obtained for x=0 sample. For 0$<$x$le$0.5, MgB$_{4}$ coexists with MgB$_{2}$ and the amount of MgB$_{4}$ increases with