ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of the rare-earth element on the effects of the structural and magnetic phase transitions in CeFeAsO, PrFeAsO, and NdFeAsO

124   0   0.0 ( 0 )
 نشر من قبل Michael McGuire
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of transport and magnetic properties and heat capacity measurements on polycrystalline CeFeAsO, PrFeAsO, and NdFeAsO. These materials undergo structural phase transitions, spin density wave-like magnetic ordering of small moments on iron, and antiferromagnetic ordering of rare earth moments. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, Hall coefficient, and magnetoresistance are reported. The magnetic behavior of the materials have been investigated using Mossbauer spectroscopy and magnetization measurements. Transport and magnetic properties are affected strongly by the structural and magnetic transitions, suggesting significant changes in the band structure and/or carrier mobilities occur, and phonon-phonon scattering is reduced upon transformation to the low temperature structure. Results are compared to recent reports for LaFeAsO, and systematic variations in properties as the identity of Ln is changed are observed and discussed. As Ln progresses across the rare-earth series from La to Nd, an increase in the hole contributions to Seebeck coefficient, and increases in magnetoresistance and the Hall coefficient are observed in the low temperature phase. Analysis of hyperfine fields at the iron nuclei determined from Mossbauer spectra indicates that the moment on Fe in the orthorhombic phase is nearly independent of the identity of Ln, in apparent contrast to reports of powder neutron diffraction refinements.



قيم البحث

اقرأ أيضاً

177 - T. Dong , Z. G. Chen , R. H. Yuan 2010
Single crystals of LaFeAsO, NdFeAsO, and SmFeAsO have been prepared by means of a NaAs flux growth technique and studied by optical spectroscopy measurements. We show that the spectral features corresponding to the partial energy gaps in the spin-den sity-wave (SDW) state are present below the structural phase transition. This indicates that the electronic state below the structural phase transition is already very close to that in the SDW state. We also show that in-plane infrared phonon modes display systematic shifts towards high frequency upon rare-earth element substitutions for La, suggesting a strong enhancement of the bonding strength. Furthermore, an asymmetric line-shape of the in-plane phonon mode is observed, implying the presence of an electron-phonon coupling effect in Fe-pnictides.
Neutron diffraction and muon spin relaxation measurements are used to obtain a detailed phase diagram of Pr(Fe,Ru)AsO. The isoelectronic substitution of Ru for Fe acts effectively as spin dilution, suppressing both the structural and magnetic phase t ransitions. The temperature of the tetragonal-orthorhombic structural phase transition decreases gradually as a function of x. Slightly below the transition temperature coherent precessions of the muon spin are observed corresponding to static magnetism, possibly reflecting a significant magneto-elastic coupling in the FeAs layers. Short range order in both the Fe and Pr moments persists for higher levels of x. The static magnetic moments disappear at a concentration coincident with that expected for percolation of the J1-J2 square lattice model.
High-pressure superconductivity in a rare-earth doped Ca0.86Pr0.14Fe2As2 single crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical resistance measurements were complemented by high pressure and low temperature x-ray diffraction studies at a synchrotron source. The electrical resistance measurements show an intriguing observation of superconductivity under pressure, with Tc as high as ~51 K at 1.9 GPa, presenting the highest Tc reported in the intermetallic class of 1-2-2 iron-based superconductors. The resistive transition observed suggests a possible existence of two superconducting phases at low pressures of 0.5 GPa: one phase starting at Tc1 ~48 K, and the other starting at Tc2~16 K. The two superconducting transitions show distinct variations with increasing pressure. High pressure low temperature structural studies indicate that the superconducting phase is a collapsed tetragonal ThCr2Si2-type (122) crystal structure. Our high pressure studies indicate that high Tc state attributed to non-bulk superconductivity in rare-earth doped 1-2-2 iron-based superconductors is stable under compression over a broad pressure range.
517 - S. R. Saha , N. P. Butch , T. Drye 2011
Aliovalent rare earth substitution into the alkaline earth site of CaFe2As2 single-crystals is used to fine-tune structural, magnetic and electronic properties of this iron-based superconducting system. Neutron and single crystal x-ray scattering exp eriments indicate that an isostructural collapse of the tetragonal unit cell can be controllably induced at ambient pressures by choice of substituent ion size. This instability is driven by the interlayer As-As anion separation, resulting in an unprecedented thermal expansion coefficient of $180times 10^{-6}$ K$^{-1}$. Electrical transport and magnetic susceptibility measurements reveal abrupt changes in the physical properties through the collapse as a function of temperature, including a reconstruction of the electronic structure. Superconductivity with onset transition temperatures as high as 47 K is stabilized by the suppression of antiferromagnetic order via chemical pressure, electron doping or a combination of both. Extensive investigations are performed to understand the observations of partial volume-fraction diamagnetic screening, ruling out extrinsic sources such as strain mechanisms, surface states or foreign phases as the cause of this superconducting phase that appears to be stable in both collapsed and uncollapsed structures.
At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low temperature orthorhombic / antiferromagnetic phase upon cooling through T ~ 170 K. With the application of pressu re this phase transition is rapidly suppressed and by ~ 0.35 GPa it is replaced by a first order phase transition to a low temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ~ 1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا