ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs

111   0   0.0 ( 0 )
 نشر من قبل Ming Yi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use angle-resolved photoemission spectroscopy to study twinned and detwinned iron pnictide compound NaFeAs. Distinct signatures of electronic reconstruction are observed to occur at the structural (TS) and magnetic (TSDW) transitions. At TS, C4 rotational symmetry is broken in the form of an anisotropic shift of the orthogonal dxz and dyz bands. The magnitude of this orbital anisotropy rapidly develops to near completion upon approaching TSDW, at which temperature band folding occurs via the antiferromagnetic ordering wave vector. Interestingly, the anisotropic band shift onsetting at TS develops in such a way to enhance the nesting conditions in the C2 symmetric state, hence is intimately correlated with the long range collinear AFM order. Furthermore, the similar behaviors of the electronic reconstruction in NaFeAs and Ba(Fe1-xCox)2As2 suggests that this rapid development of large orbital anisotropy between TS and TSDW is likely a general feature of the electronic nematic phase in the iron pnictides, and the associated orbital fluctuations may play an important role in determining the ground state properties.



قيم البحث

اقرأ أيضاً

NaFeAs belongs to a class of Fe-based superconductors which parent compounds show separated structural and magnetic transitions. Effects of the structural transition on spin dynamics therefore can be investigated separately from the magnetic transiti on. A plateau in dynamic spin response is observed in a critical region around the structural transition temperature T_S. It is interpreted as due to the stiffening of spin fluctuations along the in-plane magnetic hard axis due to the dxz and dyz orbital ordering. The appearance of anisotropic spin dynamics in the critical region above the T_S at T* offers a dynamic magnetic scattering mechanism for anisotropic electronic properties in the commonly referred nematic phase.
110 - Y. Zhang , C. He , Z. R. Ye 2011
The superconductivity discovered in iron-pnictides is intimately related to a nematic ground state, where the C4 rotational symmetry is broken via the structural and magnetic transitions. We here study the nematicity in NaFeAs with the polarization d ependent angle-resolved photoemission spectroscopy. A uniaxial strain was applied on the sample to overcome the twinning effect in the low temperature C2-symmetric state, and obtain a much simpler electronic structure than that of a twinned sample. We found the electronic structure undergoes an orbital-dependent reconstruction in the nematic state, primarily involving the dxy- and dyz-dominated bands. These bands strongly hybridize with each other, inducing a band splitting, while the dxz-dominated bands only exhibit an energy shift without any reconstruction. These findings suggest that the development of orbital-dependent spin polarization is likely the dominant force to drive the nematicity, while the ferro-orbital ordering between dxz and dyz orbitals can only play a minor role here.
We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare earth transition metal arsenide oxide NdCoAsO compound that is isostructural to high temperature superconductor NdFeAsO. Four-probe electrical re sistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and anti-ferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained anti-ferromagnetic and non-superconducting to temperatures down to 10 K and to the highest pressure achieved in this experiment of 53 GPa. A P-T phase diagram for NdCoAsO is presented to a pressure of 53 GPa and low temperatures of 10 K.
Study and comparison of over 30 examples of electron doped BaFe2As2 for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an understanding that the suppression of the structural/antiferromagnetic phase transition to low enough tem perature in these compounds is a necessary condition for superconductivity, but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c-axis) the superconducting dome exists over a limited range of values of the number of electrons added by doping (or values of the {a/c} ratio). By choosing which combination of dopants are used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of low temperature superconducting dome.
We study superconducting FeSe (Tc = 9 K) exhibiting the tetragonal-orthorhombic structural transition (Ts = 90 K) without any antiferromagnetic ordering, by utilizing angle-resolved photoemission spectroscopy. In the detwinned orthorhombic state, the energy position of the dyz orbital band at the Brillouin zone corner is 50 meV higher than that of dxz, indicating the orbital order similar to NaFeAs and BaFe2As2 families. Evidence of orbital order also appears in the hole bands at the Brillouin zone center. Precisely measured temperature dependence using strain-free samples shows that the onset of the orbital ordering (To) occurs very close to Ts, thus suggesting that the electronic nematicity above Ts is considerably weaker in FeSe compared to BaFe2As2 family.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا