ترغب بنشر مسار تعليمي؟ اضغط هنا

The Many Assembly Histories of Massive Void Galaxies as Revealed by Integral Field Spectroscopy

137   0   0.0 ( 0 )
 نشر من قبل Amelia Fraser-McKelvie
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first detailed integral field spectroscopy study of nine central void galaxies with M*>10^10 Msun using the Wide Field Spectrograph (WiFeS) to determine how a range of assembly histories manifest themselves in the current day Universe. While the majority of these galaxies are evolving secularly, we find a range of morphologies, merger histories and stellar population distributions, though similarly low Halpha-derived star formation rates (<1 Msun/yr). Two of our nine galaxies host AGNs, and two have kinematic disruptions to their gas that are not seen in their stellar component. Most massive void galaxies are red and discy, which we attribute to a lack of major mergers. Some have disturbed morphologies and may be in the process of evolving to early-type thanks to ongoing minor mergers at present times, likely fed by tendrils leading off filaments. The diversity in our small galaxy sample, despite being of similar mass and environment means that these galaxies are still assembling at present day, with minor mergers playing an important role in their evolution. We compare our sample to a mass and magnitude-matched sample of field galaxies, using data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) galaxy survey. We find that despite environmental differences, galaxies of mass M*>10^10 Msun have similarly low star formation rates (<3 Msun/yr). The lack of distinction between the star formation rates of the void and field environments points to quenching of massive galaxies being a largely mass-related effect.

قيم البحث

اقرأ أيضاً

HH 110 is a rather peculiar Herbig-Haro object in Orion that originates due to the deflection of another jet (HH 270) by a dense molecular clump, instead of being directly ejected from a young stellar object. Here we present new results on the kinema tics and physical conditions of HH 110 based on Integral Field Spectroscopy. The 3D spectral data cover the whole outflow extent (~4.5 arcmin, ~0.6 pc at a distance of 460 pc) in the spectral range 6500-7000 AA. We built emission-line intensity maps of H$alpha$, [NII] and [SII] and of their radial velocity channels. Furthermore, we analysed the spatial distribution of the excitation and electron density from [NII]/H$alpha$, [SII]/H$alpha$, and [SII] 6716/6731 integrated line-ratio maps, as well as their behaviour as a function of velocity, from line-ratio channel maps. Our results fully reproduce the morphology and kinematics obtained from previous imaging and long-slit data. In addition, the IFS data revealed, for the first time, the complex spatial distribution of the physical conditions (excitation and density) in the whole jet, and their behaviour as a function of the kinematics. The results here derived give further support to the more recent model simulations that involve deflection of a pulsed jet propagating in an inhomogeneous ambient medium. The IFS data give richer information than that provided by current model simulations or laboratory jet experiments. Hence, they could provide valuable clues to constrain the space parameters in future theoretical works.
In this paper we present the new deep images from the VEGAS survey of three massive ($M_{*} simeq 10^{12}$~M$_odot$) galaxies from the MUSE Most Massive Galaxies (M3G) project, with distances in the range $151leq D leq 183$ Mpc: PGC007748, PGC015524 and PGC049940. The long integration time and the wide field of view of OmegaCam@VST allowed us to map the light and color distributions down to $mu_gsimeq30$~mag/arcsec$^2$ and out to $sim 2R_e$. The deep data are crucial to estimate the contribution of the different galaxys components, in particular the accreted fraction in the stellar halo. The available integral-field observations with MUSE cover a limited portion of each galaxy (out to $sim 1R_e$), but, from the imaging analysis we find that they map the kinematics and stellar population beyond the first transition radius, where the contribution of the accreted component starts to dominate. The main goal of this work is to correlate the scales of the different components derived from the image analysis with the kinematics and stellar population profiles from the MUSE data. Results were used to address the assembly history of the three galaxies with the help of the theoretical predictions. Our results suggest that PGC049940 has the lowest accreted mass fraction of 77%. The higher accreted mass fraction estimated for PGC007748 and PGC015524 (86% and 89%, respectively), combined with the flat $lambda_R$ profiles suggest that a great majority of the mass has been acquired through major mergers, which have also shaped the shallower metallicity profiles observed at larger radii.
We present the results of our analysis of the RR Lyrae (RRL) variable stars detected in two transition-type dwarf galaxies (dTrans), ESO294-G010 and ESO410-G005 in the Sculptor group, which is known to be one of the closest neighboring galaxy groups to our Local Group. Using deep archival images from the Advanced Camera for Surveys (ACS) onboard the Hubble Space Telescope (HST), we have identified a sample of RR Lyrae candidates in both dTrans galaxies [219 RRab (RR0) and 13 RRc (RR1) variables in ESO294-G010; 225 RRab and 44 RRc stars in ESO410-G005]. The metallicities of the individual RRab stars are calculated via the period-amplitude-[Fe/H] relation derived by Alcock et al. This yields mean metallicities of <[Fe/H]>_{ESO294} = -1.77 +/- 0.03 and <[Fe/H]>_{ESO410} = -1.64 +/- 0.03. The RRL metallicity distribution functions (MDFs) are investigated further via simple chemical evolution models; these reveal the relics of the early chemical enrichment processes for these two dTrans galaxies. In the case of both galaxies, the shapes of the RRL MDFs are well-described by pre-enrichment models. This suggests two possible channels for the early chemical evolution for these Sculptor group dTrans galaxies: 1) The ancient stellar populations of our target dwarf galaxies might have formed from the star forming gas which was already enriched through prompt initial enrichment or an initial nucleosynthetic spike from the very first massive stars, or 2) this pre-enrichment state might have been achieved by the end products from more evolved systems of their nearest neighbor, NGC 55.
The merging history of galaxies can be traced with studies of dynamically close pairs. These consist of a massive primary galaxy and a less massive secondary (or satellite) galaxy. The study of the stellar populations of secondary (lower mass) galaxi es in close pairs provides a way to understand galaxy growth by mergers. Here we focus on systems involving at least one massive galaxy - with stellar mass above $10^{11}M_odot$ in the highly complete GAMA survey. Our working sample comprises 2,692 satellite galaxy spectra (0.1<z<0.3). These spectra are combined into high S/N stacks, and binned according to both an internal parameter, the stellar mass of the satellite galaxy (i.e. the secondary), and an external parameter, selecting either the mass of the primary in the pair, or the mass of the corresponding dark matter halo. We find significant variations in the age of the populations with respect to environment. At fixed mass, satellites around the most massive galaxies are older and possibly more metal rich, with age differences ~1-2Gyr within the subset of lower mass satellites ($sim 10^{10}M_odot$). These variations are similar when stacking with respect to the halo mass of the group where the pair is embedded. The population trends in the lower-mass satellites are consistent with the old stellar ages found in the outer regions of massive galaxies.
Early-type (E and S0) galaxies may have assembled via a variety of different evolutionary pathways. Here we investigate these pathways by comparing the stellar kinematic properties of 24 early-type galaxies from the SLUGGS survey with the hydrodynami cal simulations of Naab et al. (2014). In particular, we use the kinematics of starlight up to 4 effective radii (R$_e$) as diagnostics of galaxy inner and outer regions, and assign each galaxy to one of six Naab et al. assembly classes. The majority of our galaxies (14/24) have kinematic characteristics that indicate an assembly history dominated by gradual gas dissipation and accretion of many gas-rich minor mergers. Three galaxies, all S0s, indicate that they have experienced gas-rich major mergers in their more recent past. One additional elliptical galaxy is tentatively associated with a gas-rich merger which results in a remnant galaxy with low angular momentum. Pathways dominated by gas-poor (major or minor) mergers dominate the mass growth of six galaxies. Most SLUGGS galaxies appear to have grown in mass (and size) via the accretion of stars and gas from minor mergers, with late major mergers playing a much smaller role. We find that the fraction of accreted stars correlates with the stellar mean age and metallicity gradient, but not with the slope of the total mass density profile. We briefly mention future observational and modelling approaches that will enhance our ability to accurately reconstruct the assembly histories of individual present day galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا