ترغب بنشر مسار تعليمي؟ اضغط هنا

On the assembly history of massive galaxies. A pilot project with VEGAS deep imaging and M3G integral field spectroscopy

62   0   0.0 ( 0 )
 نشر من قبل Marilena Spavone
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present the new deep images from the VEGAS survey of three massive ($M_{*} simeq 10^{12}$~M$_odot$) galaxies from the MUSE Most Massive Galaxies (M3G) project, with distances in the range $151leq D leq 183$ Mpc: PGC007748, PGC015524 and PGC049940. The long integration time and the wide field of view of OmegaCam@VST allowed us to map the light and color distributions down to $mu_gsimeq30$~mag/arcsec$^2$ and out to $sim 2R_e$. The deep data are crucial to estimate the contribution of the different galaxys components, in particular the accreted fraction in the stellar halo. The available integral-field observations with MUSE cover a limited portion of each galaxy (out to $sim 1R_e$), but, from the imaging analysis we find that they map the kinematics and stellar population beyond the first transition radius, where the contribution of the accreted component starts to dominate. The main goal of this work is to correlate the scales of the different components derived from the image analysis with the kinematics and stellar population profiles from the MUSE data. Results were used to address the assembly history of the three galaxies with the help of the theoretical predictions. Our results suggest that PGC049940 has the lowest accreted mass fraction of 77%. The higher accreted mass fraction estimated for PGC007748 and PGC015524 (86% and 89%, respectively), combined with the flat $lambda_R$ profiles suggest that a great majority of the mass has been acquired through major mergers, which have also shaped the shallower metallicity profiles observed at larger radii.



قيم البحث

اقرأ أيضاً

We present the first detailed integral field spectroscopy study of nine central void galaxies with M*>10^10 Msun using the Wide Field Spectrograph (WiFeS) to determine how a range of assembly histories manifest themselves in the current day Universe. While the majority of these galaxies are evolving secularly, we find a range of morphologies, merger histories and stellar population distributions, though similarly low Halpha-derived star formation rates (<1 Msun/yr). Two of our nine galaxies host AGNs, and two have kinematic disruptions to their gas that are not seen in their stellar component. Most massive void galaxies are red and discy, which we attribute to a lack of major mergers. Some have disturbed morphologies and may be in the process of evolving to early-type thanks to ongoing minor mergers at present times, likely fed by tendrils leading off filaments. The diversity in our small galaxy sample, despite being of similar mass and environment means that these galaxies are still assembling at present day, with minor mergers playing an important role in their evolution. We compare our sample to a mass and magnitude-matched sample of field galaxies, using data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) galaxy survey. We find that despite environmental differences, galaxies of mass M*>10^10 Msun have similarly low star formation rates (<3 Msun/yr). The lack of distinction between the star formation rates of the void and field environments points to quenching of massive galaxies being a largely mass-related effect.
We use the optical and near-infrared galaxy samples from the Munich Near-Infrared Cluster Survey (MUNICS), the FORS Deep Field (FDF) and GOODS-S to probe the stellar mass assembly history of field galaxies out to z ~ 5. Combining information on the g alaxies stellar mass with their star-formation rate and the age of the stellar population, we can draw important conclusions on the assembly of the most massive galaxies in the universe: These objects contain the oldest stellar populations at all redshifts probed. Furthermore, we show that with increasing redshift the contribution of star-formation to the mass assembly for massive galaxies increases dramatically, reaching the era of their formation at z ~ 2 and beyond. These findings can be interpreted as evidence for an early epoch of star formation in the most massive galaxies in the universe.
Approximately half of the nearby E+A galaxies followed up with 21-cm observations have detectable HI emission. The optical spectra of these galaxies show strong post-starburst stellar populations but no optical emission lines implying star-formation is not ongoing despite the presence of significant gas reservoirs. We have obtained integral field spectroscopic follow up observations of the two brightest, and nearest, of the six E+A galaxies with HI 21-cm emission in the recent sample of Zwaan et al. (2013). In the central regions of both galaxies the observations are consistent with a post-starburst population with little emission. However, outside the central regions both galaxies have strong optical emission lines, with a clumpy or knot-like distribution, indicating ongoing star-formation. We conclude that in these two cases the presence of optical spectra lacking evidence for star-formation while a large gas mass is present can be explained by an aperture effect in selecting the nearby E+A galaxies using single-fibre spectroscopy that probes only the galaxy core.
Feedback likely plays a vital role in the formation of dwarf galaxies. While stellar processes have long been considered the main source of feedback, recent studies have revealed tantalizing signs of AGN feedback in dwarf galaxies. In this paper, we report the results from an integral-field spectroscopic study of a sample of eight dwarf galaxies with known AGN and suspected outflows. Outflows are detected in seven of them. The outflows are fast, with 50-percentile (median) velocity of up to $sim$240 km s$^{-1}$ and 80-percentile line width reaching $sim$1200 km s$^{-1}$, in clear contrast with the more quiescent kinematics of the host gas and stellar components. The outflows are generally spatially extended on a scale of several hundred pc to a few kpc, although our data do not clearly resolve the outflows in three targets. The outflows appear to be primarily photoionized by the AGN rather than shocks or young, massive stars. The kinematics and energetics of these outflows suggest that they are primarily driven by the AGN, although the star formation activity in these objects may also contribute to the energy input. A small but non-negligible portion of the outflowing material likely escapes the main body of the host galaxy and contributes to the enrichment of the circumgalactic medium. Overall, the impact of these outflows on their host galaxies is similar to those taking place in the more luminous AGN in the low-redshift universe.
The formation of two stellar bars within a galaxy has proved challenging for numerical studies. It is yet not clear whether the inner bar is born via a star formation process promoted by gas inflow along the outer bar, or whether it is dynamically as sembled from instabilities in a small-scale stellar disc. Observational constraints to these scenarios are scarce. We present a thorough study of the stellar content of two double-barred galaxies observed by the MUSE TIMER project, NGC 1291 and NGC 5850, combined with a two-dimensional multi-component photometric decomposition performed on the 3.6{mu}m images from S4G. Our analysis confirms the presence of {sigma}-hollows appearing in the stellar velocity dispersion distribution at the ends of the inner bars. Both galaxies host inner discs matching in size with the inner bars, suggestive of a dynamical formation for the inner bars from small-scale discs. The analysis of the star formation histories for the structural components shaping the galaxies provides constraints on the epoch of dynamical assembly of the inner bars, which took place >6.5 Gyr ago for NGC 1291 and >4.5 Gyr ago for NGC 5850. This implies that inner bars are long-lived structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا