ترغب بنشر مسار تعليمي؟ اضغط هنا

The SLUGGS Survey: The Assembly Histories of Individual Early-type Galaxies

127   0   0.0 ( 0 )
 نشر من قبل Duncan Forbes
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Early-type (E and S0) galaxies may have assembled via a variety of different evolutionary pathways. Here we investigate these pathways by comparing the stellar kinematic properties of 24 early-type galaxies from the SLUGGS survey with the hydrodynamical simulations of Naab et al. (2014). In particular, we use the kinematics of starlight up to 4 effective radii (R$_e$) as diagnostics of galaxy inner and outer regions, and assign each galaxy to one of six Naab et al. assembly classes. The majority of our galaxies (14/24) have kinematic characteristics that indicate an assembly history dominated by gradual gas dissipation and accretion of many gas-rich minor mergers. Three galaxies, all S0s, indicate that they have experienced gas-rich major mergers in their more recent past. One additional elliptical galaxy is tentatively associated with a gas-rich merger which results in a remnant galaxy with low angular momentum. Pathways dominated by gas-poor (major or minor) mergers dominate the mass growth of six galaxies. Most SLUGGS galaxies appear to have grown in mass (and size) via the accretion of stars and gas from minor mergers, with late major mergers playing a much smaller role. We find that the fraction of accreted stars correlates with the stellar mean age and metallicity gradient, but not with the slope of the total mass density profile. We briefly mention future observational and modelling approaches that will enhance our ability to accurately reconstruct the assembly histories of individual present day galaxies.

قيم البحث

اقرأ أيضاً

A strong correlation exists between the total mass of a globular cluster (GC) system and the virial halo mass of the host galaxy. However, the total halo mass in this correlation is a statistical measure conducted on spatial scales that are some ten times that of a typical GC system. Here we investigate the connection between GC systems and galaxys dark matter on comparable spatial scales, using dynamical masses measured on a galaxy-by-galaxy basis. Our sample consists of 17 well-studied massive (stellar mass $sim$10$^{11}$ M$_{odot}$) early-type galaxies from the SLUGGS survey. We find the strongest correlation to be that of the blue (metal-poor) GC subpopulation and the dark matter content. This correlation implies that the dark matter mass of a galaxy can be estimated to within a factor of two from careful imaging of its GC system. The ratio of the GC system mass to that of the enclosed dark matter is nearly constant. We also find a strong correlation between the fraction of blue GCs and the fraction of enclosed dark matter, so that a typical galaxy with a blue GC fraction of 60 per cent has a dark matter fraction of 86 per cent over similar spatial scales. Both halo growth and removal (via tidal stripping) may play some role in shaping this trend. In the context of the two-phase model for galaxy formation, we find galaxies with the highest fractions of accreted stars to have higher dark matter fractions for a given fraction of blue GCs.
We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ~2-4 R_e (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in int rinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (sigma_inst ~ 25 km/s) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, sigma, h_3, and h_4) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R_e often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS^3D survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.
Stellar metallicity gradients in the outer regions of galaxies are a critical tool for disentangling the contributions of in-situ and ex-situ formed stars. In the two-phase galaxy formation scenario, the initial gas collapse creates steep metallicity gradients, while the accretion of stars formed in satellites tends to flatten these gradients in the outskirts, particularly for massive galaxies. This work presents the first compilation of extended metallicity profiles over a wide range of galaxy mass. We use the DEIMOS spectrograph on the Keck telescope in multi-slit mode to obtain radial stellar metallicity profiles for 22 nearby early-type galaxies. From the calcium triplet lines in the near-infrared we measure the metallicity of the starlight up to 3 effective radii. We find a relation between the outer metallicity gradient and galaxy mass, in the sense that lower mass systems show steeper metallicity gradients than more massive galaxies. This result is consistent with a picture in which the ratio of ex-situ to in-situ formed stars is lower in less massive galaxies as a consequence of the smaller contribution by accretion. In addition, we infer a correlation between the strength of the calcium triplet feature in the near-infrared and the stellar initial mass function slope that is consistent with recent models in the literature.
We study mass distributions within and beyond 5~effective radii ($R_{rm e}$) in 23 early-type galaxies from the SLUGGS survey, using their globular cluster (GC) kinematic data. The data are obtained with Keck/DEIMOS spectrograph, and consist of line- of-sight velocities for ~$3500$ GCs, measured with a high precision of ~15 $rm km s^{-1}$ per GC and extending out to $~13 R_{rm e}$. We obtain the mass distribution in each galaxy using the tracer mass estimator of Watkins et al. and account for kinematic substructures, rotation of the GC systems and galaxy flattening in our mass estimates. The observed scatter between our mass estimates and results from the literature is less than 0.2 dex. The dark matter fraction within $5R_{rm e}$ ($f_{rm DM}$) increases from ~$0.6$ to ~$0.8$ for low- and high-mass galaxies, respectively, with some intermediate-mass galaxies ($M_*{sim}10^{11}M_odot$) having low $f_{rm DM}sim0.3$, which appears at odds with predictions from simple galaxy models. We show that these results are independent of the adopted orbital anisotropy, stellar mass-to-light ratio, and the assumed slope of the gravitational potential. However, the low $f_{rm DM}$ in the ~$10^{11}M_odot$ galaxies agrees with the cosmological simulations of Wu et al. where the pristine dark matter distribution has been modified by baryons during the galaxy assembly process. We find hints that these $M_*sim10^{11}M_odot$ galaxies with low $f_{rm DM}$ have very diffuse dark matter haloes, implying that they assembled late. Beyond $5R_{rm e}$, the $M/L$ gradients are steeper in the more massive galaxies and shallower in both low and intermediate mass galaxies.
We investigate the kinematic properties of nine nearby early-type galaxies with evidence of a disk-like component. Three of these galaxies are located in the field, five in the group and only one in the cluster environment. By combining the kinematic s of the stars with those of the globular clusters (GCs) and planetary nebulae (PNe), we probe the outer regions of our galaxies out to $sim$4-6 Re. Six galaxies have PNe and red GCs that show good kinematic alignment with the stars, whose rotation occurs along the photometric major-axis of the galaxies, suggesting that both the PNe and red GCs are good tracers of the underlying stellar population beyond that traced by the stars. Additionally, the blue GCs also show rotation that is overall consistent with that of the red GCs in these six galaxies. The remaining three galaxies show kinematic twists and misalignment of the PNe and GCs with respect to the underlying stars, suggesting recent galaxy interactions. From the comparison with simulations, we propose that all six aligned galaxies that show similar dispersion-dominated kinematics at large radii (>2-3 Re) had similar late ($z<1$) assembly histories characterised by mini mergers (mass-ratio <1:10). The different Vrot/$sigma$ profiles are then the result of an early ($z>1$) minor merger (1:10< mass-ratio <1:4) for the four galaxies with peaked and decreasing Vrot/$sigma$ profiles and of a late minor merger for the two galaxies with flat Vrot/$sigma$ profiles. The three mis-aligned galaxies likely formed through multiple late minor mergers that enhanced their velocity dispersion at all radii, or a late major merger that spun-up both the GC sub-populations at large radii. Therefore, lenticular galaxies can have complex merger histories that shape their characteristic kinematic profile shapes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا