ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the fragmentation of high line-mass filaments with ALMA: the integral shaped filament in Orion A

133   0   0.0 ( 0 )
 نشر من قبل Jouni Kainulainen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the fragmentation of the nearest high line-mass filament, the integral shaped filament (ISF, line-mass $sim$ 400 M$_odot$ pc$^{-1}$) in the Orion A molecular cloud. We have observed a 1.6 pc long section of the ISF with the Atacama Large Millimetre/submillimeter Array (ALMA) at 3 mm continuum emission, at a resolution of $sim$3 (1 200 AU). We identify from the region 43 dense cores with masses about a solar mass. 60% of the ALMA cores are protostellar and 40% are starless. The nearest neighbour separations of the cores do not show a preferred fragmentation scale; the frequency of short separations increases down to 1 200 AU. We apply a two-point correlation analysis on the dense core separations and show that the ALMA cores are significantly grouped at separations below $sim$17 000 AU and strongly grouped below $sim$6 000 AU. The protostellar and starless cores are grouped differently: only the starless cores group strongly below $sim$6 000 AU. In addition, the spatial distribution of the cores indicates periodic grouping of the cores into groups of $sim$30 000 AU in size, separated by $sim$50 000 AU. The groups coincide with dust column density peaks detected by Herschel. These results show hierarchical, two-mode fragmentation in which the maternal filament periodically fragments into groups of dense cores. Critically, our results indicate that the fragmentation models for lower line-mass filaments ($sim$ 16 M$_odot$ pc$^{-1}$) fail to capture the observed properties of the ISF. We also find that the protostars identified with Spitzer and Herschel in the ISF are grouped at separations below $sim$17 000 AU. In contrast, young stars with disks do not show significant grouping. This suggests that the grouping of dense cores is partially retained over the protostar lifetime, but not over the lifetime of stars with disks.

قيم البحث

اقرأ أيضاً

The Integral Shaped Filament (ISF) is the nearest molecular cloud with rapid star formation, including massive stars, and it is therefore a star-formation laboratory. We use Gaia parallaxes, to show that the distances to young Class II stars (disks) projected along the spine of this filament are related to the gas radial velocity by $$ v = -{Dovertau} + K;qquad tau = 4,{rm Myr}, $$ where $K$ is a constant. This implies that the ISF is a standing wave, which is consistent with the Stutz & Gould (2016) Slingshot prediction. The $tau=4,{rm Myr}$ timescale is consistent with the Slingshot picture that the Orion Nebula Cluster (ONC) is the third cluster to be violently split off from the Orion A cloud (following NGC 1981 and NGC 1987) at few-Myr intervals due to gravito-magnetic oscillations. We also present preliminary evidence that the truncation of the ISF is now taking place $16^prime$ south of the ONC and is mediated by a torsional wave that is propagating south with a characteristic timescale $tau_{rm torsion} = 0.5,{rm Myr}$, i.e. eight times shorter. The relation between these two wave phenomena is not presently understood.
(abridged) Within the Orion A molecular cloud, the integral-shaped filament (ISF) is a prominent, degree-long structure of dense gas and dust, with clear signs of recent and on-going high-mass star formation. We used the ArTeMiS bolometer camera at A PEX to map a 0.6x0.2 deg^2 region covering OMC-1, OMC-2, OMC-3 at 350 and 450 micron. We combined these data with Herschel-SPIRE maps to recover extended emission. The combined Herschel-ArTeMiS maps provide details on the distribution of dense, cold material, with a high spatial dynamic range, from our 8 resolution (0.016 pc) up to the size of the map ~10-15 deg. By combining Herschel and ArTeMiS data at 160, 250, 350 and 450 micron, we constructed high-resolution temperature and H2 column density maps. We extracted radial profiles from the column density map in several, representative portions of the ISF, that we fitted with Gaussian and Plummer models to derive their intrinsic widths. We also compared the distribution of material traced by ArTeMiS with that seen in the higher density tracer N2H+(1-0) recently observed with the ALMA interferometer. All the radial profiles that we extracted show clear deviation from a Gaussian, with evidence for an inner plateau, previously not seen using Herschel-only data. We measure intrinsic half-power widths in the range 0.06 to 0.11 pc. This is significantly larger than the Gaussian widths measured for fibers seen in N2H+, which probably traces only the dense innermost regions of the large-scale filament. These half-power widths are within a factor of two of the value of 0.1 pc found for a large sample of nearby filaments in various low-mass star-forming regions, which tends to indicate that the physical conditions governing the fragmentation of prestellar cores within transcritical or supercritical filaments are the same over a large range of masses per unit length.
Abridged. Are all filaments bundles of fibers? To address this question, we have investigated the gas organization within the paradigmatic Integral Shape Filament (ISF). We combined two new ALMA Cycle 3 mosaics with previous IRAM 30m observations to produce a high-dynamic range N$_2$H$^+$(1-0) emission map of the ISF tracing its high-density material and velocity structure down to scales of 0.009 pc. From the analysis of the gas kinematics, we identify a total of 55 dense fibers in the central region of the ISF. Independently of their location, these fibers are characterized by transonic internal motions, lengths of ~0.15 pc, and masses per-unit-length close to those expected in hydrostatic equilibrium. The ISF fibers are spatially organized forming a dense bundle with multiple hub-like associations likely shaped by the local gravitational potential. Within this complex network, the ISF fibers show a compact radial emission profile with a median FWHM of 0.035 pc systematically narrower than the previously proposed universal 0.1 pc filament width. Our ALMA observations reveal complex bundles of fibers in the ISF, suggesting strong similarities between the internal substructure of this massive filament and previously studied lower-mass objects. The fibers show identical dynamic properties in both low- and high-mass regions, and their widespread detection suggests a preferred organizational mechanism of gas in which the physical fiber dimensions (width and length) are self-regulated depending on their intrinsic gas density. Combined with previous works, we identify a systematic increase of the surface density of fibers as a function of the total mass per-unit-length in filamentary clouds. Based on this empirical correlation, we propose a unified star-formation scenario where the observed differences between low- and high-mass clouds emerge naturally from the initial concentration of fibers.
The fragmentation of filaments in molecular clouds has attracted a lot of attention as there seems to be a relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of molecular clouds. We address the early evolution of pc-scale filaments that form within individual clouds. We focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? We examine three simulated molecular clouds formed in kpc-scale numerical simulations performed with the FLASH code. We compare the properties of the identified filaments with the predictions of analytic filament stability models. The line masses and mass fraction enclosed in the identified filaments increase continuously after the onset of self-gravity. The first fragments appear early when the line masses lie well below the critical line mass of Ostrikers hydrostatic equilibrium solution. The average line masses of filaments identified in 3D density cubes increases far more quickly than those identified in 2D column density maps. Our results suggest that hydrostatic or dynamic compression from the surrounding cloud has a significant impact on the early dynamical evolution of filaments. A simple model of an isolated, isothermal cylinder may not provide a good approach for fragmentation analysis. Caution must be exercised in interpreting distributions of properties of filaments identified in column density maps, especially in the case of low-mass filaments. Comparing or combining results from studies that use different filament finding techniques is strongly discouraged.
(Abridged) The initial physical conditions of high-mass stars and protoclusters remain poorly characterized. To this end we present the first targeted ALMA 1.3mm continuum and spectral line survey towards high-mass starless clump candidates, selectin g a sample of 12 of the most massive candidates ($400-4000, M_odot$) within 5 kpc. The joint 12+7m array maps have a high spatial resolution of $sim 3000, mathrm{au}$ ($sim 0.8^{primeprime}$) and have point source mass-completeness down to $sim 0.3, M_odot$ at $6sigma$ (or $1sigma$ column density sensitivity of $1.1times10^{22}, mathrm{cm^{-2}}$). We discover previously undetected signposts of low-luminosity star formation from CO (2-1) and SiO (5-4) bipolar outflows and other signatures towards 11 out of 12 clumps, showing that current MIR/FIR Galactic Plane surveys are incomplete to low- and intermediate-mass protostars ($lesssim 50, L_odot$). We compare a subset of the observed cores with a suite of radiative transfer models of starless cores. We find a high-mass starless core candidate with a model-derived mass consistent with $29^{52}_{15}, M_odot$ when integrated over size scales of $2times10^4, mathrm{au}$. Unresolved cores are poorly fit by starless core models, supporting the interpretation that they are protostellar even without detection of outflows. Substantial fragmentation is observed towards 10 out of 12 clumps. We extract sources from the maps using a dendrogram to study the characteristic fragmentation length scale. Nearest neighbor separations when corrected for projection are consistent with being equal to the clump average thermal Jeans length. Our findings support a hierarchical fragmentation process, where the highest density regions are not strongly supported against thermal gravitational fragmentation by turbulence or magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا