ﻻ يوجد ملخص باللغة العربية
The neutrino process ($ u$-process) for the production of 7Li and 11B in core-collapse supernovae (SNe) is extensively investigated. Initial abundances of s-nuclei and other physical conditions are derived from an updated calculation of the SN 1987A progenitor. The nuclear reaction network including neutrino reactions is constructed with the variable order Bader-Deuflhard integration method. We find that yields of 7Li and 11B significantly depend on the stellar metallicity while they are independent of the weak s-process during the stellar evolution. When the metallicity is high, there are more neutron absorbers, i.e., 56Fe, 14N (from initial CNO nuclei), and 54Fe, and the neutron abundance is small during the $ u$-process. Since 7Be is predominantly destroyed via 7Be(n,p)7Li, a change in the neutron abundance results in different 7Be yields. Then, the calculated yield ratio 7Li/11B=0.93 for the solar metallicity is larger than that for the SN 1987A 7Li/11B=0.80 by 16 % in the inverted mass hierarchy case. We analyze contributions of respective reactions as well as abundance evolution, and clarify the $ u$-process of 7Li and 11B.
We reinvestigate effects of neutrino oscillations on the production of 7Li and 11B in core-collapse supernovae (SNe). During the propagation of neutrinos from the proto-neutron star, their flavors change and the neutrino reaction rates for spallation
We calculate the abundances of $^{7}$Li, $^{11}$B, $^{92}$Nb, $^{98}$Tc, $^{138}$La, and $^{180}$Ta produced by neutrino $( u)$ induced reactions in a core-collapse supernova explosion. We consider the modification by $ u$ self-interaction ($ u$-SI)
Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment
Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced MSW effect and hence may have an impact on nucleosynthesis. In this paper we explore the eff
The spectrum of the supernova relic neutrino (SRN) background from past stellar collapses including black hole formation (failed supernovae) is calculated. The redshift dependence of the black hole formation rate is considered on the basis of the met