ترغب بنشر مسار تعليمي؟ اضغط هنا

Actinide-rich and Actinide-poor $r$-Process Enhanced Metal-Poor Stars do not Require Separate $r$-Process Progenitors

94   0   0.0 ( 0 )
 نشر من قبل Erika Holmbeck
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The astrophysical production site of the heaviest elements in the universe remains a mystery. Incorporating heavy element signatures of metal-poor, $r$-process enhanced stars into theoretical studies of $r$-process production can offer crucial constraints on the origin of heavy elements. In this study, we introduce and apply the Actinide-Dilution with Matching model to a variety of stellar groups ranging from actinide-deficient to actinide-enhanced to empirically characterize $r$-process ejecta mass as a function of electron fraction. We find that actinide-boost stars do not indicate the need for a unique and separate $r$-process progenitor. Rather, small variations of neutron richness within the same type of $r$-process event can account for all observed levels of actinide enhancements. The very low-$Y_e$, fission-cycling ejecta of an $r$-process event need only constitute 10-30% of the total ejecta mass to accommodate most actinide abundances of metal-poor stars. We find that our empirical $Y_e$ distributions of ejecta are similar to those inferred from studies of GW170817 mass ejecta ratios, which is consistent with neutron-star mergers being a source of the heavy elements in metal-poor, $r$-process enhanced stars.

قيم البحث

اقرأ أيضاً

Of the variations in the elemental abundance patterns of stars enhanced with $r$-process elements, the variation in the relative actinide-to-lanthanide ratio is among the most significant. We investigate the source of these actinide differences in or der to determine whether these variations are due to natural differences in astrophysical sites, or due to the uncertain nuclear properties that are accessed in $r$-process sites. We find that variations between relative stellar actinide abundances is most likely astrophysical in nature, owing to how neutron-rich the ejecta from an $r$-process event may be. Furthermore, if an $r$-process site is capable of generating variations in the neutron-richness of its ejected material, then only one type of $r$-process site is needed to explain all levels of observed relative actinide enhancements.
Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. Recent observations of the r-process-enriched star BD +17 3248 include new abundance determinations for the neutron-capture elements Cd I (Z=48), Lu II (Z = 71) and Os II (Z = 76), the first detections of these elements in metal-poor r-process-enriched halo stars. Combining these and previous observations, we have now detected 32 n-capture elements in BD +17 3248. This is the most of any metal-poor halo star to date. For the most r-process-rich (i.e. [Eu/Fe] ~= 1) halo stars, such as CS 22892-052 and BD +17 3248, abundance comparisons show that the heaviest stable n-capture elements (i.e., Ba and above, Z >= 56) are consistent with a scaled solar system r-process abundance distribution. The lighter n-capture element abundances in these stars, however, do not conform to the solar pattern. These comparisons, as well as recent observations of heavy elements in metal-poor globular clusters, suggest the possibility of multiple synthesis mechanisms for the n-capture elements. The heavy element abundance patterns in most metal-poor halo stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment indicates that r-process enrichment in the early Galaxy is common.
The chemical abundances of a galaxys metal-poor stellar population can be used to investigate the earliest stages of its formation and chemical evolution. The Magellanic Clouds are the most massive of the Milky Ways satellite galaxies and are thought to have evolved in isolation until their recent accretion by the Milky Way. Unlike the Milky Ways less massive satellites, little is know about the Magellanic Clouds metal-poor stars. We have used the mid-infrared metal-poor star selection of Schlaufman & Casey (2014) and archival data to target nine LMC and four SMC giants for high-resolution Magellan/MIKE spectroscopy. These nine LMC giants with $-2.4lesssim[text{Fe/H}]lesssim-1.5$ and four SMC giants with $-2.6lesssim[text{Fe/H}]lesssim-2.0$ are the most metal-poor stars in the Magellanic Clouds yet subject to a comprehensive abundance analysis. While we find that at constant metallicity these stars are similar to Milky Way stars in their $alpha$, light, and iron-peak elemental abundances, both the LMC and SMC are enhanced relative to the Milky Way in the $r$-process element europium. These abundance offsets are highly significant, equivalent to $3.9sigma$ for the LMC, $2.7sigma$ for the SMC, and $5.0sigma$ for the complete Magellanic Cloud sample. We propose that the $r$-process enhancement of the Magellanic Clouds metal-poor stellar population is a result of the Magellanic Clouds isolated chemical evolution and long history of accretion from the cosmic web combined with $r$-process nucleosynthesis on a timescale longer than the core-collapse supernova timescale but shorter than or comparable to the thermonuclear (i.e., Type Ia) supernova timescale.
The abundances of r-process elements of very metal-poor stars capture the history of the r-process enrichment in the early stage of star formation in a galaxy. Currently, various types of astrophysical sites including neutron star mergers, magneto-ro tational supernovae, and collapsars, are suggested as the origin of r-process elements. The time delay between the star formation and the production of r-process elements is the key to distinguish these scenarios with the caveat that the diffusion of r-process elements in the interstellar medium may induce the delay in r-process enrichment because r-process events are rare. Here we study the observed Ba abundance data of very metal-poor stars as the tracer of the early enrichment history of r-process elements. We find that the gradual increase of [Ba/Mg] with [Fe/H], which is remarkably similar among the Milky Way and classical dwarfs, requires a significant time delay (100 Myr -- 1 Gyr) of r-process events from star formation rather than the diffusion-induced delay. We stress that this conclusion is robust to the assumption regarding s-process contamination in the Ba abundances because the sources with no delay would overproduce Ba at very low metallicities even without the contribution from the s-process. Therefore we conclude that sources with a delay, possibly neutron star mergers, are the origins of r-process elements.
This paper presents the detailed abundances and r-process classifications of 126 newly identified metal-poor stars as part of an ongoing collaboration, the R-Process Alliance. The stars were identified as metal-poor candidates from the RAdial Velocit y Experiment (RAVE) and were followed-up at high spectral resolution (R~31,500) with the 3.5~m telescope at Apache Point Observatory. The atmospheric parameters were determined spectroscopically from Fe I lines, taking into account <3D> non-LTE corrections and using differential abundances with respect to a set of standards. Of the 126 new stars, 124 have [Fe/H]<-1.5, 105 have [Fe/H]<-2.0, and 4 have [Fe/H]<-3.0. Nine new carbon-enhanced metal-poor stars have been discovered, 3 of which are enhanced in r-process elements. Abundances of neutron-capture elements reveal 60 new r-I stars (with +0.3<=[Eu/Fe]<=+1.0 and [Ba/Eu]<0) and 4 new r-II stars (with [Eu/Fe]>+1.0). Nineteen stars are found to exhibit a `limited-r signature ([Sr/Ba]>+0.5, [Ba/Eu]<0). For the r-II stars, the second- and third-peak main r-process patterns are consistent with the r-process signature in other metal-poor stars and the Sun. The abundances of the light, alpha, and Fe-peak elements match those of typical Milky Way halo stars, except for one r-I star which has high Na and low Mg, characteristic of globular cluster stars. Parallaxes and proper motions from the second Gaia data release yield UVW space velocities for these stars which are consistent with membership in the Milky Way halo. Intriguingly, all r-II and the majority of r-I stars have retrograde orbits, which may indicate an accretion origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا