ﻻ يوجد ملخص باللغة العربية
A {it superpattern} is a string of characters of length $n$ that contains as a subsequence, and in a sense that depends on the context, all the smaller strings of length $k$ in a certain class. We prove structural and probabilistic results on superpatterns for {em preferential arrangements}, including (i) a theorem that demonstrates that a string is a superpattern for all preferential arrangements if and only if it is a superpattern for all permutations; and (ii) a result that is reminiscent of a still unresolved conjecture of Alon on the smallest permutation on $[n]$ that contains all $k$-permutations with high probability.
We exhibit a particular free subarrangement of a certain restriction of the Weyl arrangement of type $E_7$ and use it to give an affirmative answer to a recent conjecture by T.~Abe on the nature of additionally free and stair-free arrangements.
In this paper, we characterize the extremal digraphs with the maximal or minimal $alpha$-spectral radius among some digraph classes such as rose digraphs, generalized theta digraphs and tri-ring digraphs with given size $m$. These digraph classes are
In 1965, Motzkin and Straus [5] provided a new proof of Turans theorem based on a continuous characterization of the clique number of a graph using the Lagrangian of a graph. This new proof aroused interests in the study of Lagrangians of r-uniform g
Given a proper edge coloring $varphi$ of a graph $G$, we define the palette $S_{G}(v,varphi)$ of a vertex $v in V(G)$ as the set of all colors appearing on edges incident with $v$. The palette index $check s(G)$ of $G$ is the minimum number of distin
Visibility representation of digraphs was introduced by Axenovich, Beveridge, Hutch-inson, and West (emph{SIAM J. Discrete Math.} {bf 27}(3) (2013) 1429--1449) as a natural generalization of $t$-bar visibility representation of undirected graphs. A {