ﻻ يوجد ملخص باللغة العربية
In 1965, Motzkin and Straus [5] provided a new proof of Turans theorem based on a continuous characterization of the clique number of a graph using the Lagrangian of a graph. This new proof aroused interests in the study of Lagrangians of r-uniform graphs. The Lagrangian of a hypergraph has been a useful tool in hypergraph extremal problems. Sidorenko and Frankl-Furedi applied Lagrangians of hypergraphs in finding Turan densities of hypergraphs. Frankl and Rodl applied it in disproving Erdos jumping constant conjecture. In most applications, we need an upper bound for the Lagrangian of a hypergraph. Frankl and Furedi conjectured that the r-uniform graph with m edges formed by taking the first m sets in the colex ordering of $N^(r)$ has the largest Lagrangian of all r-uniform graphs with m edges. Talbot in [14] provided some evidences for Frankl and Furedis conjecture. In this paper, we prove that the r-uniform graph with m edges formed by taking the first m sets in the colex ordering of $N^(r)$ has the largest Lagrangian of all r-uniform graphs on t vertices with m edges when ${t choose r}-3$ or ${t choose r}-4$. As an implication, we also prove that Frankl and Furedis conjecture holds for 3-uniform graphs with ${t choose 3}-3$ or ${t choose 3}-4$ edges.
A remarkable connection between the order of a maximum clique and the Lagrangian of a graph was established by Motzkin and Straus in [7]. This connection and its extensions were successfully employed in optimization to provide heuristics for the maxi
Motzkin and Straus established a remarkable connection between the maximum clique and the Lagrangian of a graph in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for the maximum clique number
Frankl and Furedi (1989) conjectured that the $r$-graph with $m$ edges formed by taking the first $m$ sets in the colex ordering of ${mathbb N}^{(r)}$ has the largest graph-Lagrangian of all $r$-graphs with $m$ edges. In this paper, we establish some
There is a remarkable connection between the maximum clique number and the Lagrangian of a graph given by T. S. Motzkin and E.G. Straus in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for t
Let $F$ be a graph. A hypergraph is called Berge $F$ if it can be obtained by replacing each edge in $F$ by a hyperedge containing it. Given a family of graphs $mathcal{F}$, we say that a hypergraph $H$ is Berge $mathcal{F}$-free if for every $F in m