ﻻ يوجد ملخص باللغة العربية
Given a proper edge coloring $varphi$ of a graph $G$, we define the palette $S_{G}(v,varphi)$ of a vertex $v in V(G)$ as the set of all colors appearing on edges incident with $v$. The palette index $check s(G)$ of $G$ is the minimum number of distinct palettes occurring in a proper edge coloring of $G$. In this paper we give various upper and lower bounds on the palette index of $G$ in terms of the vertex degrees of $G$, particularly for the case when $G$ is a bipartite graph with small vertex degrees. Some of our results concern $(a,b)$-biregular graphs; that is, bipartite graphs where all vertices in one part have degree $a$ and all vertices in the other part have degree $b$. We conjecture that if $G$ is $(a,b)$-biregular, then $check{s}(G)leq 1+max{a,b}$, and we prove that this conjecture holds for several families of $(a,b)$-biregular graphs. Additionally, we characterize the graphs whose palette index equals the number of vertices.
The $chi$-stability index ${rm es}_{chi}(G)$ of a graph $G$ is the minimum number of its edges whose removal results in a graph with the chromatic number smaller than that of $G$. In this paper three open problems from [European J. Combin. 84 (2020)
A proper edge coloring of a graph $G$ with colors $1,2,dots,t$ is called a emph{cyclic interval $t$-coloring} if for each vertex $v$ of $G$ the edges incident to $v$ are colored by consecutive colors, under the condition that color $1$ is considered
A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theor
For a graph $H$ and a $k$-chromatic graph $F,$ if the Turan graph $T_{k-1}(n)$ has the maximum number of copies of $H$ among all $n$-vertex $F$-free graphs (for $n$ large enough), then $H$ is called $F$-Turan-good, or $k$-Turan-good for short if $F$
Building upon the notion of Gutman index $operatorname{SGut}(G)$, Mao and Das recently introduced the Steiner Gutman index by incorporating Steiner distance for a connected graph $G$. The emph{Steiner Gutman $k$-index} $operatorname{SGut}_k(G)$ of $G