ﻻ يوجد ملخص باللغة العربية
Massive amounts of misinformation have been observed to spread in uncontrolled fashion across social media. Examples include rumors, hoaxes, fake news, and conspiracy theories. At the same time, several journalistic organizations devote significant efforts to high-quality fact checking of online claims. The resulting information cascades contain instances of both accurate and inaccurate information, unfold over multiple time scales, and often reach audiences of considerable size. All these factors pose challenges for the study of the social dynamics of online news sharing. Here we introduce Hoaxy, a platform for the collection, detection, and analysis of online misinformation and its related fact-checking efforts. We discuss the design of the platform and present a preliminary analysis of a sample of public tweets containing both fake news and fact checking. We find that, in the aggregate, the sharing of fact-checking content typically lags that of misinformation by 10--20 hours. Moreover, fake news are dominated by very active users, while fact checking is a more grass-roots activity. With the increasing risks connected to massive online misinformation, social news observatories have the potential to help researchers, journalists, and the general public understand the dynamics of real and fake news sharing.
Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are t
The global COVID-19 pandemic has led to the online proliferation of health-, political-, and conspiratorial-based misinformation. Understanding the reach and belief in this misinformation is vital to managing this crisis, as well as future crises. Th
Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work,
We study collective attention paid towards hurricanes through the lens of $n$-grams on Twitter, a social media platform with global reach. Using hurricane name mentions as a proxy for awareness, we find that the exogenous temporal dynamics are remark
Previous research has demonstrated that various properties of infectious diseases can be inferred from online search behaviour. In this work we use time series of online search query frequencies to gain insights about the prevalence of COVID-19 in mu