ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraint satisfaction problems with isolated solutions are hard

155   0   0.0 ( 0 )
 نشر من قبل Lenka Zdeborova
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the phase diagram and the algorithmic hardness of the random `locked constraint satisfaction problems, and compare them to the commonly studied non-locked problems like satisfiability of boolean formulas or graph coloring. The special property of the locked problems is that clusters of solutions are isolated points. This simplifies significantly the determination of the phase diagram, which makes the locked problems particularly appealing from the mathematical point of view. On the other hand we show empirically that the clustered phase of these problems is extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. Our results suggest that the easy/hard transition (for currently known algorithms) in the locked problems coincides with the clustering transition. These should thus be regarded as new benchmarks of really hard constraint satisfaction problems.



قيم البحث

اقرأ أيضاً

We introduce and study the random locked constraint satisfaction problems. When increasing the density of constraints, they display a broad clustered phase in which the space of solutions is divided into many isolated points. While the phase diagram can be found easily, these problems, in their clustered phase, are extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. We thus propose new benchmarks of really hard optimization problems and provide insight into the origin of their typical hardness.
Random constraint satisfaction problems undergo several phase transitions as the ratio between the number of constraints and the number of variables is varied. When this ratio exceeds the satisfiability threshold no more solutions exist; the satisfia ble phase, for less constrained problems, is itself divided in an unclustered regime and a clustered one. In the latter solutions are grouped in clusters of nearby solutions separated in configuration space from solutions of other clusters. In addition the rigidity transition signals the appearance of so-called frozen variables in typical solutions: beyond this threshold most solutions belong to clusters with an extensive number of variables taking the same values in all solutions of the cluster. In this paper we refine the description of this phenomenon by estimating the location of the freezing transition, corresponding to the disappearance of all unfrozen solutions (not only typical ones). We also unveil phase transitions for the existence and uniqueness of locked solutions, in which all variables are frozen. From a technical point of view we characterize atypical solutions with a number of frozen variables different from the typical value via a large deviation study of the dynamics of a stripping process (whitening) that unveils the frozen variables of a solution, building upon recent works on atypical trajectories of the bootstrap percolation dynamics. Our results also bear some relevance from an algorithmic perspective, previous numerical studies having shown that heuristic algorithms of various kinds usually output unfrozen solutions.
We determine the complexity of several constraint satisfaction problems using the heuristic algorithm, WalkSAT. At large sizes N, the complexity increases exponentially with N in all cases. Perhaps surprisingly, out of all the models studied, the har dest for WalkSAT is the one for which there is a polynomial time algorithm.
We introduce a novel Entropy-driven Monte Carlo (EdMC) strategy to efficiently sample solutions of random Constraint Satisfaction Problems (CSPs). First, we extend a recent result that, using a large-deviation analysis, shows that the geometry of the space of solutions of the Binary Perceptron Learning Problem (a prototypical CSP), contains regions of very high-density of solutions. Despite being sub-dominant, these regions can be found by optimizing a local entropy measure. Building on these results, we construct a fast solver that relies exclusively on a local entropy estimate, and can be applied to general CSPs. We describe its performance not only for the Perceptron Learning Problem but also for the random $K$-Satisfiabilty Problem (another prototypical CSP with a radically different structure), and show numerically that a simple zero-temperature Metropolis search in the smooth local entropy landscape can reach sub-dominant clusters of optimal solutions in a small number of steps, while standard Simulated Annealing either requires extremely long cooling procedures or just fails. We also discuss how the EdMC can heuristically be made even more efficient for the cases we studied.
The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا