ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyzing Non-proportional Hazards: Use of the MRH Package

40   0   0.0 ( 0 )
 نشر من قبل Yolanda Hagar
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this manuscript we demonstrate the analysis of right-censored survival outcomes using the MRH package in R. The MRH package implements the multi-resolution hazard (MRH) model, which is a Polya-tree based, Bayesian semi-parametric method for flexible estimation of the hazard rate and covariate effects. The package allows for covariates to be included under the proportional and non-proportional hazards assumption, and for robust estimation of the hazard rate in periods of sparsely observed failures via a pruning tool.



قيم البحث

اقرأ أيضاً

Smooth backfitting has proven to have a number of theoretical and practical advantages in structured regression. Smooth backfitting projects the data down onto the structured space of interest providing a direct link between data and estimator. This paper introduces the ideas of smooth backfitting to survival analysis in a proportional hazard model, where we assume an underlying conditional hazard with multiplicative components. We develop asymptotic theory for the estimator and we use the smooth backfitter in a practical application, where we extend recent advances of in-sample forecasting methodology by allowing more information to be incorporated, while still obeying the structured requirements of in-sample forecasting.
Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] considered the estimation of the risk function $psi (x)$ in the proportional hazards model. Their proposed estimator is based on integrating the estimated derivative function obtained through a local version of the partial likelihood. They proved the large sample properties of the derivative function, but the large sample properties of the estimator for the risk function itself were not established. In this paper, we consider direct estimation of the relative risk function $psi (x_2)-psi (x_1)$ for any location normalization point $x_1$. The main novelty in our approach is that we select observations in shrinking neighborhoods of both $x_1$ and $x_2$ when constructing a local version of the partial likelihood, whereas Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] only concentrated on a single neighborhood, resulting in the cancellation of the risk function in the local likelihood function. The asymptotic properties of our estimator are rigorously established and the variance of the estimator is easily estimated. The idea behind our approach is extended to estimate the differences between groups. A simulation study is carried out.
Antibodies, an essential part of our immune system, develop through an intricate process to bind a wide array of pathogens. This process involves randomly mutating DNA sequences encoding these antibodies to find variants with improved binding, though mutations are not distributed uniformly across sequence sites. Immunologists observe this nonuniformity to be consistent with mutation motifs, which are short DNA subsequences that affect how likely a given site is to experience a mutation. Quantifying the effect of motifs on mutation rates is challenging: a large number of possible motifs makes this statistical problem high dimensional, while the unobserved history of the mutation process leads to a nontrivial missing data problem. We introduce an $ell_1$-penalized proportional hazards model to infer mutation motifs and their effects. In order to estimate model parameters, our method uses a Monte Carlo EM algorithm to marginalize over the unknown ordering of mutations. We show that our method performs better on simulated data compared to current methods and leads to more parsimonious models. The application of proportional hazards to mutation processes is, to our knowledge, novel and formalizes the current methods in a statistical framework that can be easily extended to analyze the effect of other biological features on mutation rates.
59 - Behzad Kianian 2019
Instrumental variables (IV) are a useful tool for estimating causal effects in the presence of unmeasured confounding. IV methods are well developed for uncensored outcomes, particularly for structural linear equation models, where simple two-stage e stimation schemes are available. The extension of these methods to survival settings is challenging, partly because of the nonlinearity of the popular survival regression models and partly because of the complications associated with right censoring or other survival features. We develop a simple causal hazard ratio estimator in a proportional hazards model with right censored data. The method exploits a special characterization of IV which enables the use of an intuitive inverse weighting scheme that is generally applicable to more complex survival settings with left truncation, competing risks, or recurrent events. We rigorously establish the asymptotic properties of the estimators, and provide plug-in variance estimators. The proposed method can be implemented in standard software, and is evaluated through extensive simulation studies. We apply the proposed IV method to a data set from the Prostate, Lung, Colorectal and Ovarian cancer screening trial to delineate the causal effect of flexible sigmoidoscopy screening on colorectal cancer survival which may be confounded by informative noncompliance with the assigned screening regimen.
Non-proportional hazards (NPH) have been observed recently in many immuno-oncology clinical trials. Weighted log-rank tests (WLRT) with suitably chosen weights can be used to improve the power of detecting the difference of the two survival curves in the presence of NPH. However, it is not easy to choose a proper WLRT in practice when both robustness and efficiency are considered. A versatile maxcombo test was proposed to achieve the balance of robustness and efficiency and has received increasing attentions in both methodology development and application. However, survival trials often warrant interim analyses due to its high cost and long duration. The integration and application of maxcombo tests in interim analyses often require extensive simulation studies. In this paper, we propose a simulation-free approach for group sequential design with maxcombo test in survival trials. The simulation results support that the proposed approaches successfully control both the type I error rate and offer great accuracy and flexibility in estimating sample sizes, at the expense of light computation burden. Notably, our methods display a strong robustness towards various model misspecifications, and have been implemented in an R package for free access online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا