ترغب بنشر مسار تعليمي؟ اضغط هنا

Smooth backfitting of proportional hazards with multiplicative components

129   0   0.0 ( 0 )
 نشر من قبل Enno Mammen
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Smooth backfitting has proven to have a number of theoretical and practical advantages in structured regression. Smooth backfitting projects the data down onto the structured space of interest providing a direct link between data and estimator. This paper introduces the ideas of smooth backfitting to survival analysis in a proportional hazard model, where we assume an underlying conditional hazard with multiplicative components. We develop asymptotic theory for the estimator and we use the smooth backfitter in a practical application, where we extend recent advances of in-sample forecasting methodology by allowing more information to be incorporated, while still obeying the structured requirements of in-sample forecasting.

قيم البحث

اقرأ أيضاً

Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] considered the estimation of the risk function $psi (x)$ in the proportional hazards model. Their proposed estimator is based on integrating the estimated derivative function obtained through a local version of the partial likelihood. They proved the large sample properties of the derivative function, but the large sample properties of the estimator for the risk function itself were not established. In this paper, we consider direct estimation of the relative risk function $psi (x_2)-psi (x_1)$ for any location normalization point $x_1$. The main novelty in our approach is that we select observations in shrinking neighborhoods of both $x_1$ and $x_2$ when constructing a local version of the partial likelihood, whereas Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] only concentrated on a single neighborhood, resulting in the cancellation of the risk function in the local likelihood function. The asymptotic properties of our estimator are rigorously established and the variance of the estimator is easily estimated. The idea behind our approach is extended to estimate the differences between groups. A simulation study is carried out.
We derive convenient uniform concentration bounds and finite sample multivariate normal approximation results for quadratic forms, then describe some applications involving variance components estimation in linear random-effects models. Random-effect s models and variance components estimation are classical topics in statistics, with a corresponding well-established asymptotic theory. However, our finite sample results for quadratic forms provide additional flexibility for easily analyzing random-effects models in non-standard settings, which are becoming more important in modern applications (e.g. genomics). For instance, in addition to deriving novel non-asymptotic bounds for variance components estimators in classical linear random-effects models, we provide a concentration bound for variance components estimators in linear models with correlated random-effects. Our general concentration bound is a uniform version of the Hanson-Wright inequality. The main normal approximation result in the paper is derived using Reinert and R{o}llins (2009) embedding technique and multivariate Steins method with exchangeable pairs.
Principal component analysis is an important pattern recognition and dimensionality reduction tool in many applications. Principal components are computed as eigenvectors of a maximum likelihood covariance $widehat{Sigma}$ that approximates a populat ion covariance $Sigma$, and these eigenvectors are often used to extract structural information about the variables (or attributes) of the studied population. Since PCA is based on the eigendecomposition of the proxy covariance $widehat{Sigma}$ rather than the ground-truth $Sigma$, it is important to understand the approximation error in each individual eigenvector as a function of the number of available samples. The recent results of Kolchinskii and Lounici yield such bounds. In the present paper we sharpen these bounds and show that eigenvectors can often be reconstructed to a required accuracy from a sample of strictly smaller size order.
We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_1,dots, X_n$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma.$ The complexity of the problem is characterized by its effective rank ${bf r}(Sigma):= frac{{rm tr}(Sigma)}{|Sigma|},$ where ${rm tr}(Sigma)$ denotes the trace of $Sigma$ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma.$ Under the assumption that ${bf r}(Sigma)=o(n),$ we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semi-parametric optimality.
This paper deals with the estimation of a probability measure on the real line from data observed with an additive noise. We are interested in rates of convergence for the Wasserstein metric of order $pgeq 1$. The distribution of the errors is assume d to be known and to belong to a class of supersmooth or ordinary smooth distributions. We obtain in the univariate situation an improved upper bound in the ordinary smooth case and less restrictive conditions for the existing bound in the supersmooth one. In the ordinary smooth case, a lower bound is also provided, and numerical experiments illustrating the rates of convergence are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا