ﻻ يوجد ملخص باللغة العربية
Instrumental variables (IV) are a useful tool for estimating causal effects in the presence of unmeasured confounding. IV methods are well developed for uncensored outcomes, particularly for structural linear equation models, where simple two-stage estimation schemes are available. The extension of these methods to survival settings is challenging, partly because of the nonlinearity of the popular survival regression models and partly because of the complications associated with right censoring or other survival features. We develop a simple causal hazard ratio estimator in a proportional hazards model with right censored data. The method exploits a special characterization of IV which enables the use of an intuitive inverse weighting scheme that is generally applicable to more complex survival settings with left truncation, competing risks, or recurrent events. We rigorously establish the asymptotic properties of the estimators, and provide plug-in variance estimators. The proposed method can be implemented in standard software, and is evaluated through extensive simulation studies. We apply the proposed IV method to a data set from the Prostate, Lung, Colorectal and Ovarian cancer screening trial to delineate the causal effect of flexible sigmoidoscopy screening on colorectal cancer survival which may be confounded by informative noncompliance with the assigned screening regimen.
Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifia
Instrumental variable methods can identify causal effects even when the treatment and outcome are confounded. We study the problem of imperfect measurements of the binary instrumental variable, treatment or outcome. We first consider non-differential
Missing data occur frequently in empirical studies in health and social sciences, often compromising our ability to make accurate inferences. An outcome is said to be missing not at random (MNAR) if, conditional on the observed variables, the missing
This paper considers the instrumental variable quantile regression model (Chernozhukov and Hansen, 2005, 2013) with a binary endogenous treatment. It offers two identification results when the treatment status is not directly observed. The first resu
Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] considered the estimation of the risk function $psi (x)$ in the proportional hazards model. Their proposed estimator is based on integrating the estimated derivative function obtained through