ﻻ يوجد ملخص باللغة العربية
We show that three natural decision problems about links and 3-manifolds are computationally hard, assuming some conjectures in complexity theory. The first problem is determining whether a link in the 3-sphere bounds a Seifert surface with Thurston norm at most a given integer; this is shown to be NP-complete. The second problem is the homeomorphism problem for closed 3-manifolds; this is shown to be at least as hard as the graph isomorphism problem. The third problem is determining whether a given link in the 3-sphere is a sublink of another given link; this is shown to be NP-hard.
It is shown that any closed three-manifold M obtained by integral surgery on a knot in the three-sphere can always be constructed from integral surgeries on a 3-component link L with each component being an unknot in the three-sphere. It is also inte
For a closed 3-manifold $M$ in a certain class, we give a presentation of the cellular chain complex of the universal cover of $M$. The class includes all surface bundles, some surgeries of knots in $S^3$, some cyclic branched cover of $S^3$, and som
We study the set $widehat{mathcal S}_M$ of framed smoothly slice links which lie on the boundary of the complement of a 1-handlebody in a closed, simply connected, smooth 4-manifold $M$. We show that $widehat{mathcal S}_M$ is well-defined and describ
We introduce new topological quantum invariants of compact oriented 3-manifolds with boundary where the boundary is a disjoint union of two identical surfaces. The invariants are constructed via surgery on manifolds of the form $F times I$ where $I$
As a generalization of Davis-Januszkiewicz theory, there is an essential link between locally standard $(Z_2)^n$-actions (or $T^n$-actions) actions and nice manifolds with corners, so that a class of nicely behaved equivariant cut-and-paste operation