ترغب بنشر مسار تعليمي؟ اضغط هنا

Cellular chain complexes of universal covers of some 3-manifolds

131   0   0.0 ( 0 )
 نشر من قبل Takefumi Nosaka
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Takefumi Nosaka




اسأل ChatGPT حول البحث

For a closed 3-manifold $M$ in a certain class, we give a presentation of the cellular chain complex of the universal cover of $M$. The class includes all surface bundles, some surgeries of knots in $S^3$, some cyclic branched cover of $S^3$, and some Seifert manifolds. In application, we establish a formula for calculating the linking form of a cyclic branched cover of $S^3$, and develop procedures of computing some Dijkgraaf-Witten invariants.



قيم البحث

اقرأ أيضاً

117 - Zhi Lu , Li Yu 2009
In this paper we study the (equivariant) topological types of a class of 3-dimensional closed manifolds (i.e., 3-dimensional small covers), each of which admits a locally standard $(mathbb{Z}_2)^3$-action such that its orbit space is a simple convex 3-polytope. We introduce six equivariant operations on 3-dimensional small covers. These six operations are interesting because of their combinatorial natures. Then we show that each 3-dimensional small cover can be obtained from $mathbb{R}P^3$ and $S^1timesmathbb{R}P^2$ with certain $(mathbb{Z}_2)^3$-actions under these six operations. As an application, we classify all 3-dimensional small covers up to $({Bbb Z}_2)^3$-equivariant unoriented cobordism.
Every closed orientable surface S has the following property: any two connected covers of S of the same degree are homeomorphic (as spaces). In this, paper we give a complete classification of compact 3-manifolds with empty or toroidal boundary which have the above property. We also discuss related group-theoretic questions.
170 - Tadayuki Watanabe 2020
In this article, we construct countably many mutually non-isotopic diffeomorphisms of some closed non simply-connected 4-manifolds that are homotopic to but not isotopic to the identity, by surgery along $Theta$-graphs. As corollaries of this, we obt ain some new results on codimension 1 embeddings and pseudo-isotopies of 4-manifolds. In the proof of the non-triviality of the diffeomorphisms, we utilize a twisted analogue of Kontsevichs characteristic class for smooth bundles, which is obtained by extending a higher dimensional analogue of March{e}--Lescops equivariant triple intersection in configuration spaces of 3-manifolds to allow Lie algebraic local coefficient system.
Let $N$ be a prime 3-manifold that is not a closed graph manifold. Building on a result of Hongbin Sun and using a result of Asaf Hadari we show that for every $kinBbb{N}$ there exists a finite cover $tilde{N}$ of $N$ such that $|operatorname{Tor} H_1(tilde{N};Bbb{Z})|>k$.
81 - Tadayuki Watanabe 2016
In this paper, it is explained that a topological invariant for 3-manifold $M$ with $b_1(M)=1$ can be constructed by applying Fukayas Morse homotopy theoretic approach for Chern--Simons perturbation theory to a local system on $M$ of rational functio ns associated to the free abelian covering of $M$. Our invariant takes values in Garoufalidis--Rozanskys space of Jacobi diagrams whose edges are colored by rational functions. It is expected that our invariant gives a lot of nontrivial finite type invariants of 3-manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا