ﻻ يوجد ملخص باللغة العربية
As a generalization of Davis-Januszkiewicz theory, there is an essential link between locally standard $(Z_2)^n$-actions (or $T^n$-actions) actions and nice manifolds with corners, so that a class of nicely behaved equivariant cut-and-paste operations on locally standard actions can be carried out in step on nice manifolds with corners. Based upon this, we investigate what kinds of closed manifolds admit locally standard $(Z_2)^n$-actions; especially for the 3-dimensional case. Suppose $M$ is an orientable closed connected 3-manifold. When $H_1(M;Z_2)=0$, it is shown that $M$ admits a locally standard $(Z_2)^3$-action if and only if $M$ is homeomorphic to a connected sum of 8 copies of some $Z_2$-homology sphere $N$, and if further assuming $M$ is irreducible, then $M$ must be homeomorphic to $S^3$. In addition, the argument is extended to rational homology 3-sphere $M$ with $H_1(M;Z_2) cong Z_2$ and an additional assumption that the $(Z_2)^3$-action has a fixed point.
We show that the classical example $X$ of a 3-dimensional generalized manifold constructed by van Kampen is another example of not homologically locally connected (i.e. not HLC) space. This space $X$ is not locally homeomorphic to any of the compact
In this paper, it is explained that a topological invariant for 3-manifold $M$ with $b_1(M)=1$ can be constructed by applying Fukayas Morse homotopy theoretic approach for Chern--Simons perturbation theory to a local system on $M$ of rational functio
Integral foliated simplicial volume is a version of simplicial volume combining the rigidity of integral coefficients with the flexibility of measure spaces. In this article, using the language of measure equivalence of groups we prove a proportional
In this paper we study the (equivariant) topological types of a class of 3-dimensional closed manifolds (i.e., 3-dimensional small covers), each of which admits a locally standard $(mathbb{Z}_2)^3$-action such that its orbit space is a simple convex
We prove that any mapping torus of a closed 3-manifold has zero simplicial volume. When the fiber is a prime 3-manifold, classification results can be applied to show vanishing of the simplicial volume, however the case of reducible fibers is by far