ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave Photoresistance in an Ultrahigh Quality GaAs Quantum Well

54   0   0.0 ( 0 )
 نشر من قبل Michael A. Zudov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependence of microwave-induced resistance oscillations (MIRO), according to the theory, originates from electron-electron scattering. This scattering affects both the quantum lifetime, or the density of states, and the inelastic lifetime, which governs the relaxation of the nonequilibrium distribution function. Here, we report on MIRO in an ultrahigh mobility ($mu > 3 times 10^7$ cm$^2$/Vs) 2D electron gas at $T$ between $0.3$ K and $1.8$ K. In contrast to theoretical predictions, the quantum lifetime is found to be $T$-independent in the whole temperature range studied. At the same time, the $T$-dependence of the inelastic lifetime is much emph{stronger} than can be expected from electron-electron interactions.



قيم البحث

اقرأ أيضاً

The microwave photoresistance of a two-dimensional topological insulator in a HgTe quantum well with an inverted spectrum has been experimentally studied under irradiation at frequencies of 110-169 GHz. Two mechanisms of formation of this photoresist ance have been revealed. The first mechanism is due to transitions between the dispersion branches of edge current states, whereas the second mechanism is caused by the action of radiation on the bulk of the quantum well.
We report on an observation of a fractional quantum Hall effect in an ultra-high quality two-dimensional hole gas hosted in a strained Ge quantum well. The Hall resistance reveals precisely quantized plateaus and vanishing longitudinal resistance at filling factors $ u = 2/3, 4/3$ and $5/3$. From the temperature dependence around $ u = 3/2$ we obtain the composite fermion mass of $m^star approx 0.4,m_e$, where $m_e$ is the mass of a free electron. Owing to large Zeeman energy, all observed states are spin-polarized and can be described in terms of spinless composite fermions.
Multiple quantum beats of a system of the coherently excited quantum confined exciton states in a high-quality heterostructure with a wide InGaAs/GaAs quantum well are experimentally detected by the spectrally resolved pump-probe method for the first time. The beat signal is observed as at positive as at negative delays between the pump and probe pulses. A theoretical model is developed, which allows one to attribute the QBs at negative delay to the four-wave mixing (FWM) signal detected at the non-standard direction. The beat signal is strongly enhanced by the interference of the FWM wave with the polarization created by the probe pulse. At positive delay, the QBs are due to the mutual interference of the quantum confined exciton states. Several QB frequencies are observed in the experiments, which coincide with the interlevel spacings in the exciton system. The decay time for QBs is of order of several picoseconds at both the positive and negative delays. They are close to the relaxation time of exciton population that allows one to consider the exciton depopulation as the main mechanism of the coherence relaxation in the system under study.
We carry out microphotoluminescence measurements of an acceptor-bound exciton (A^0X) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into a ccount a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.
We report a magnetotransport study of an ultra-high mobility ($bar{mu}approx 25times 10^6$,cm$^2$,V$^{-1}$,s$^{-1}$) $n$-type GaAs quantum well up to 33 T. A strong linear magnetoresistance (LMR) of the order of 10$^5$ % is observed in a wide tempera ture range between 0.3 K and 60 K. The simplicity of our material system with a single sub-band occupation and free electron dispersion rules out most complicated mechanisms that could give rise to the observed LMR. At low temperature, quantum oscillations are superimposed onto the LMR. Both, the featureless LMR at high $T$ and the quantum oscillations at low $T$ follow the empirical resistance rule which states that the longitudinal conductance is directly related to the derivative of the transversal (Hall) conductance multiplied by the magnetic field and a constant factor $alpha$ that remains unchanged over the entire temperature range. Only at low temperatures, small deviations from this resistance rule are observed beyond $ u=1$ that likely originate from a different transport mechanism for the composite fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا