ﻻ يوجد ملخص باللغة العربية
The Mu3e experiment aims to find or exclude the lepton flavour violating decay $mu rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of $2cdot 10^{-15}$. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to $10^{8}$ muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements.
The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminium nucleus ($mu-e$ conversion,
ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DU
The technical design report of the Inner Tracker for the KLOE-2 experiment is presented
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and as
The AMoRE (Advanced Mo-based Rare process Experiment) project is a series of experiments that use advanced cryogenic techniques to search for the neutrinoless double-beta decay of mohundred. The work is being carried out by an international collabora