ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Regions of Shock-accelerated Particles during a Solar Coronal Mass Ejection

97   0   0.0 ( 0 )
 نشر من قبل Diana Elena Morosan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sun is an active star that can launch large eruptions of magnetised plasma into the heliosphere, called coronal mass ejections (CMEs). These ejections can drive shocks that accelerate particles to high energies, often resulting in radio emission at low frequencies (<200 MHz). To date, the relationship between the expansion of CMEs, shocks and particle acceleration is not well understood, partly due to the lack of radio imaging at low frequencies during the onset of shock-producing CMEs. Here, we report multi-instrument radio, white-light and ultraviolet imaging of the second largest flare in Solar Cycle 24 (2008-present) and its associated fast CME (3038+/-288 km/s). We identify the location of a multitude of radio shock signatures, called herringbones, and find evidence for shock accelerated electron beams at multiple locations along the expanding CME. These observations support theories of non-uniform, rippled shock fronts driven by an expanding CME in the solar corona.



قيم البحث

اقرأ أيضاً

Context. Some of the most prominent sources for particle acceleration in our Solar System are large eruptions of magnetised plasma from the Sun called coronal mass ejections (CMEs). These accelerated particles can generate radio emission through vari ous mechanisms. Aims. CMEs are often accompanied by a variety of solar radio bursts with different shapes and characteristics in dynamic spectra. Radio bursts directly associated with CMEs often show movement in the direction of CME expansion. Here, we aim to determine the emission mechanism of multiple moving radio bursts that accompanied a flare and CME that took place on 14 June 2012. Methods. We used radio imaging from the Nancay Radioheliograph, combined with observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, to analyse these moving radio bursts in order to determine their emission mechanism and three-dimensional (3D) location with respect to the expanding CME. Results. In using a 3D representation of the particle acceleration locations in relation to the overlying coronal magnetic field and the CME propagation, for the first time, we provide evidence that these moving radio bursts originate near the CME flanks and some that are possible signatures of shock-accelerated electrons following the fast CME expansion in the low corona. Conclusions. The moving radio bursts, as well as other stationary bursts observed during the eruption, occur simultaneously with a type IV continuum in dynamic spectra, which is not usually associated with emission at the CME flanks. Our results show that moving radio bursts that could traditionally be classified as moving type IVs can represent shock signatures associated with CME flanks or plasma emission inside the CME behind its flanks, which are closely related to the lateral expansion of the CME in the low corona.
Planar magnetic structures (PMSs) are periods in the solar wind during which interplanetary magnetic field vectors are nearly parallel to a single plane. One of the specific regions where PMSs have been reported are coronal mass ejection (CME)-driven sheaths. We use here an automated method to identify PMSs in 95 CME sheath regions observed in-situ by the Wind and ACE spacecraft between 1997 and 2015. The occurrence and location of the PMSs are related to various shock, sheath and CME properties. We find that PMSs are ubiquitous in CME sheaths; 85% of the studied sheath regions had PMSs with the mean duration of 6.0 hours. In about one-third of the cases the magnetic field vectors followed a single PMS plane that covered a significant part (at least 67%) of the sheath region. Our analysis gives strong support for two suggested PMS formation mechanisms: the amplification and alignment of solar wind discontinuities near the CME-driven shock and the draping of the magnetic field lines around the CME ejecta. For example, we found that the shock and PMS plane normals generally coincided for the events where the PMSs occurred near the shock (68% of the PMS plane normals near the shock were separated by less than 20{deg} from the shock normal), while deviations were clearly larger when PMSs occurred close to the ejecta leading edge. In addition, PMSs near the shock were generally associated with lower upstream plasma beta than the cases where PMSs occurred near the leading edge of the CME. We also demonstrate that the planar parts of the sheath contain a higher amount of strongly southward magnetic field than the non-planar parts, suggesting that planar sheaths are more likely to drive magnetospheric activity.
We present a comprehensive statistical analysis of 106 sheath regions driven by coronal mass ejections (CMEs) and measured near 1 AU. Using data from the STEREO probes, this extended analysis focuses on two discrete categorizations. In the first cate gorization, we investigate how the generic features of sheaths change with their potential formation mechanisms (propagation and expansion sheaths), namely, their associations with magnetic ejectas (MEs) which are primarily expanding or propagating in the solar wind. We find propagation sheaths to be denser and driven by stronger MEs, whereas expansion sheaths are faster. Exploring the temporal profiles of these sheaths with a superposed epoch technique, we observe that most of the magnetic field and plasma signatures are more elevated in propagation sheaths relative to expansion sheaths. The second categorization is based on speed variations across sheaths. Employing linear least squares regression, we categorize four distinct speed profiles of the sheath plasma. We find that the associated shock properties and solar cycle phase do not impact the occurrence of such variations. Our results also highlight that the properties of the driving MEs are a major source of variability in the sheath properties. Through logistic regression, we conclude that the magnetic field strength and the ME speed in the frame of the solar wind are likely drivers of these speed variations.
During its first solar encounter, the Parker Solar Probe (PSP) acquired unprecedented up-close imaging of a small Coronal Mass Ejection (CME) propagating in the forming slow solar wind. The CME originated as a cavity imaged in extreme ultraviolet tha t moved very slowly ($<50$ km/s) to the 3-5 solar radii (R$_odot$) where it then accelerated to supersonic speeds. We present a new model of an erupting Flux Rope (FR) that computes the forces acting on its expansion with a computation of its internal magnetic field in three dimensions. The latter is accomplished by solving the Grad-Shafranov equation inside two-dimensional cross sections of the FR. We use this model to interpret the kinematic evolution and morphology of the CME imaged by PSP. We investigate the relative role of toroidal forces, momentum coupling, and buoyancy for different assumptions on the initial properties of the CME. The best agreement between the dynamic evolution of the observed and simulated FR is obtained by modeling the two-phase eruption process as the result of two episodes of poloidal flux injection. Each episode, possibly induced by magnetic reconnection, boosted the toroidal forces accelerating the FR out of the corona. We also find that the drag induced by the accelerating solar wind could account for about half of the acceleration experienced by the FR. We use the model to interpret the presence of a small dark cavity, clearly imaged by PSP deep inside the CME, as a low-density region dominated by its strong axial magnetic fields.
We present the first PSP-observed CME that hits a second spacecraft before the end of the PSP encounter, providing an excellent opportunity to study short-term CME evolution. The CME was launched from the Sun on 10 October 2019 and was measured in si tu at PSP on 13 October 2019 and at STEREO-A on 14 October 2019. The small, but not insignificant, radial (~0.15 au) and longitudinal (~8 deg) separation between PSP and STEREO-A at this time allows for observations of both short-term radial evolution as well as investigation of the global CME structure in longitude. Although initially a slow CME, magnetic field and plasma observations indicate that the CME drove a shock at STEREO-A and also exhibited an increasing speed profile through the CME (i.e. evidence for compression). We find that the presence of the shock and other compression signatures at 1 au are due to the CME having been overtaken and accelerated by a high speed solar wind stream (HSS). We estimate the minimum interaction time between the CME and the HSS to be about 2.5 days, indicating the interaction started well before the CME arrival at PSP and STEREO-A. Despite alterations of the CME by the HSS, we find that the CME magnetic field structure is similar between the vantage points, with overall the same flux rope classification and the same field distortions present. These observations are consistent with the fact that coherence in the magnetic structure is needed for steady and continued acceleration of the CME.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا