ﻻ يوجد ملخص باللغة العربية
We show that in homogeneous fragmentation processes the largest fragment at time $t$ has size $e^{-t Phi(bar{p})}t^{-frac32 (log Phi)(bar{p})+o(1)},$ where $Phi$ is the Levy exponent of the fragmentation process, and $bar{p}$ is the unique solution of the equation $(log Phi)(bar{p})=frac1{1+bar{p}}$. We argue that this result is in line with predictions arising from the classification of homogeneous fragmentation processes as logarithmically correlated random fields.
We study the asymptotics of the $k$-regular self-similar fragmentation process. For $alpha > 0$ and an integer $k geq 2$, this is the Markov process $(I_t)_{t geq 0}$ in which each $I_t$ is a union of open subsets of $[0,1)$, and independently each s
Growth-fragmentation processes describe the evolution of systems in which cells grow slowly and fragment suddenly. Despite originating as a way to describe biological phenomena, they have recently been found to describe the lengths of certain curves
We introduce a non-homogeneous fractional Poisson process by replacing the time variable in the fractional Poisson process of renewal type with an appropriate function of time. We characterize the resulting process by deriving its non-local governing
An important property of Kingmans coalescent is that, starting from a state with an infinite number of blocks, over any positive time horizon, it transitions into an almost surely finite number of blocks. This is known as `coming down from infinity.
The fractional non-homogeneous Poisson process was introduced by a time-change of the non-homogeneous Poisson process with the inverse $alpha$-stable subordinator. We propose a similar definition for the (non-homogeneous) fractional compound Poisson