ﻻ يوجد ملخص باللغة العربية
Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolmantextquoteright s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing the gravitational force through the molecular acceleration, couples the heat flux with the metric coefficients and the gradients of the state variables. In the present paper it is shown, by textquotedblleft suppressingtextquotedblright{} the molecular acceleration in Boltzmanntextquoteright s equation, that a gravitational field drives a heat flux. This procedure corresponds to the description of particle motion through geodesics, in which a Newtonian limit to the Schwarzschild metric is assumed. The effect vanishes in the non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.
Transport properties in gases are significantly affected by temperature. In previous works it has been shown that when the thermal agitation in a gas is high enough, such that relativistic effects become relevant, heat dissipation is driven not solel
In this paper we show how using a relativistic kinetic equation the ensuing expression for the heat flux can be casted in the form required by Classical Irreversible Thermodynamics. Indeed, it is linearly related to the temperature and number density
In this paper we consider spherically symmetric general fluids with heat flux, motivated by causal thermodynamics, and give the appropriate set of conditions that define separating shells defining the divide between expansion and collapse. To do so w
We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.
Starting from a microscopic approach, we develop a covariant formalism to describe a set of interacting gases. For that purpose, we model the collision term entering the Boltzmann equation for a class of interactions and then integrate this equation