ﻻ يوجد ملخص باللغة العربية
Starting from a microscopic approach, we develop a covariant formalism to describe a set of interacting gases. For that purpose, we model the collision term entering the Boltzmann equation for a class of interactions and then integrate this equation to obtain an effective macroscopic description. This formalism will be useful to study the cosmic microwave background non-perturbatively in inhomogeneous cosmologies. It should also be useful for the study of the dynamics of the early universe and can be applied, if one considers fluids of galaxies, to the study of structure formation.
We re-derive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast to the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for t
We present the results of deriving the Israel-Stewart equations of relativistic dissipative fluid dynamics from kinetic theory via Grads 14-moment expansion. Working consistently to second order in the Knudsen number, these equations contain several new terms which are absent in previous treatments.
Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolmantextquoteright s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. T
After a sudden disruption, weakly interacting quantum systems first relax to a prethermalized state that can be described by perturbation theory and a generalized Gibbs ensemble. Using these properties of the prethermalized state we perturbatively de
We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point o