ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale control of rewriteable doping patterns in pristine graphene/boron nitride heterostructures

101   0   0.0 ( 0 )
 نشر من قبل Jairo Velasco Jr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanoscale control of charge doping in two-dimensional (2D) materials permits the realization of electronic analogs of optical phenomena, relativistic physics at low energies, and technologically promising nanoelectronics. Electrostatic gating and chemical doping are the two most common methods to achieve local control of such doping. However, these approaches suffer from complicated fabrication processes that introduce contamination, change material properties irreversibly, and lack flexible pattern control. Here we demonstrate a clean, simple, and reversible technique that permits writing, reading, and erasing of doping patterns for 2D materials at the nanometer scale. We accomplish this by employing a graphene/boron nitride (BN) heterostructure that is equipped with a bottom gate electrode. By using electron transport and scanning tunneling microscopy (STM), we demonstrate that spatial control of charge doping can be realized with the application of either light or STM tip voltage excitations in conjunction with a gate electric field. Our straightforward and novel technique provides a new path towards on-demand graphene pn junctions and ultra-thin memory devices.



قيم البحث

اقرأ أيضاً

327 - L. Ju , J. Velasco Jr. , E. Huang 2014
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces[1] has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties, and the emergence of novel physical phenomena and device functionality[2-8]. Here we report photo-induced doping in van der Waals heterostructures (VDHs) consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photo-induced doping maintains the high carrier mobility of the graphene-boron nitride (G/BN) heterostructure, which resembles the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially-varying doping profiles such as p-n junctions. We show that this photo-induced doping arises from microscopically coupled optical and electrical responses of G/BN heterostructures, which includes optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.
We present a method to create and erase spatially resolved doping profiles in graphene-hexagonal boron nitride (hBN) heterostructures. The technique is based on photo-induced doping by a focused laser and does neither require masks nor photo resists. This makes our technique interesting for rapid prototyping of unconventional electronic device schemes, where the spatial resolution of the rewritable, long-term stable doping profiles is only limited by the laser spot size (~600 nm) and the accuracy of sample positioning. Our optical doping method offers a way to implement and to test different, complex doping patterns in one and the very same graphene device, which is not achievable with conventional gating techniques.
166 - A. Mishchenko , J. S. Tu , Y. Cao 2014
Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the reali sation of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes, separated by a layer of hexagonal boron nitride (hBN) in a transistor device, can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induces a tuneable radio-frequency oscillatory current which has potential for future high frequency technology.
Van der Waals heterostructures employing graphene and hexagonal boron nitride (hBN) crystals have emerged as a promising platform for plasmonics thanks to the tunability of their collective modes with carrier density and record values for plasmonics figures of merit. In this Article we investigate theoretically the role of moire-pattern superlattices in nearly aligned graphene on hBN by using continuum-model Hamiltonians derived from ab initio calculations. We calculate the systems energy loss function for a variety of chemical potential values that are accessible in gated devices. Our calculations reveal that the electron-hole asymmetry of the moire bands leads to a remarkable asymmetry of the plasmon dispersion between positive and negative chemical potentials, showcasing the intricate band structure and rich absorption spectrum across the secondary Dirac point gap for the hole bands.
Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphenes Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadters butterfly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا