ﻻ يوجد ملخص باللغة العربية
We present a method to create and erase spatially resolved doping profiles in graphene-hexagonal boron nitride (hBN) heterostructures. The technique is based on photo-induced doping by a focused laser and does neither require masks nor photo resists. This makes our technique interesting for rapid prototyping of unconventional electronic device schemes, where the spatial resolution of the rewritable, long-term stable doping profiles is only limited by the laser spot size (~600 nm) and the accuracy of sample positioning. Our optical doping method offers a way to implement and to test different, complex doping patterns in one and the very same graphene device, which is not achievable with conventional gating techniques.
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces[1] has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties, and the emergence of
The integrated inplane growth of two dimensional materials with similar lattices, but distinct electrical properties, could provide a promising route to achieve integrated circuitry of atomic thickness. However, fabrication of edge specific GNR in th
We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. Fo
Nanoscale control of charge doping in two-dimensional (2D) materials permits the realization of electronic analogs of optical phenomena, relativistic physics at low energies, and technologically promising nanoelectronics. Electrostatic gating and che
When a crystal is subjected to a periodic potential, under certain circumstances (such as when the period of the potential is close to the crystal periodicity; the potential is strong enough, etc.) it might adjust itself to follow the periodicity of