ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmons in realistic graphene/hexagonal boron nitride moire patterns

140   0   0.0 ( 0 )
 نشر من قبل Andrea Tomadin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Van der Waals heterostructures employing graphene and hexagonal boron nitride (hBN) crystals have emerged as a promising platform for plasmonics thanks to the tunability of their collective modes with carrier density and record values for plasmonics figures of merit. In this Article we investigate theoretically the role of moire-pattern superlattices in nearly aligned graphene on hBN by using continuum-model Hamiltonians derived from ab initio calculations. We calculate the systems energy loss function for a variety of chemical potential values that are accessible in gated devices. Our calculations reveal that the electron-hole asymmetry of the moire bands leads to a remarkable asymmetry of the plasmon dispersion between positive and negative chemical potentials, showcasing the intricate band structure and rich absorption spectrum across the secondary Dirac point gap for the hole bands.



قيم البحث

اقرأ أيضاً

Moire superlattices (MSL) formed in angle-aligned bilayers of van der Waals materials have become a promising platform to realize novel two-dimensional electronic states. Angle-aligned trilayer structures can form two sets of MSLs which could potenti ally interfere with each other. In this work, we directly image the moire patterns in both monolayer graphene aligned on hBN and twisted bilayer graphene aligned on hBN, using combined scanning microwave impedance microscopy and conductive atomic force microscopy. Correlation of the two techniques reveals the contrast mechanism for the achieved ultrahigh spatial resolution (<2 nm). We observe two sets of MSLs with different periodicities in the trilayer stack. The smaller MSL breaks the 6-fold rotational symmetry and exhibits abrupt discontinuities at the boundaries of the larger MSL. Using a rigid atomic-stacking model, we demonstrate that the hBN layer considerably modifies the MSL of twisted bilayer graphene. We further analyze its effect on the reciprocal space spectrum of the dual-moire system.
103 - Nicolas Leconte , Jeil Jung 2019
Interference of double moire patterns of graphene (G) encapsulated by hexagonal boron nitride (BN) can alter the electronic structure features near the primary/secondary Dirac points and the electron-hole symmetry introduced by a single G/BN moire pa ttern depending on the relative stacking arrangements of the top/bottom BN layers. We show that strong interference effects are found in nearly aligned BN/G/BN and BN/G/NB and obtain the evolution of the associated density of states as a function of moire superlattice twist angles. For equal moire periods and commensurate patterns with $Delta phi = 0^{circ}$ modulo $60^{circ}$ angle differences the patterns can add up constructively leading to large pseudogaps of about $sim 0.5$ eV on the hole side or cancel out destructively depending on their relative sliding, e.g. partially recovering electron-hole symmetry. The electronic structure of moire quasicrystals for $Delta phi =30^{circ}$ differences reveal double moire features in the density of states with almost isolated van Hove singularities where we can expect strong correlations.
136 - Jiseon Shin , Youngju Park , 2020
Spontaneous orbital magnetism observed in twisted bilayer graphene (tBG) on nearly aligned hexagonal boron nitride (BN) substrate builds on top of the electronic structure resulting from combined G/G and G/BN double moire interfaces. Here we show tha t tBG/BN commensurate double moire patterns can be classified into two types, each favoring the narrowing of either the conduction or valence bands on average, and obtain the evolution of the bands as a function of the interlayer sliding vectors and electric fields. Finite valley Chern numbers $pm 1$ are found in a wide range of parameter space when the moire bands are isolated through gaps, while the local density of states associated to the flat bands are weakly affected by the BN substrate invariably concentrating around the AA-stacked regions of tBG. We illustrate the impact of the BN substrate for a particularly pronounced electron-hole asymmetric band structure by calculating the optical conductivities of twisted bilayer graphene near the magic angle as a function of carrier density. The band structures corresponding to other $N$-multiple commensurate moire period ratios indicate it is possible to achieve narrow width $W lesssim 30$ meV isolated folded band bundles for tBG angles $theta lesssim 1^{circ}$.
When hexagonal boron nitride (hBN) and graphene are aligned at zero or small twist angle, a moire structure is formed due to the small lattice constant mismatch between the two structures. In this work, we analyze magnetic ordering tendencies, driven by onsite Coulomb interactions, of encapsulated bilayer graphene (BG) forming a moire structure with one (hBN-BG) or both hBN layers (hBN-BG-hBN), using the random phase approximation. The calculations are performed in a fully atomistic Hubbard model that takes into account all $pi$-electrons of the carbon atoms in one moire unit cell. We analyze the charge neutral case and find that the dominant magnetic ordering instability is uniformly antiferromagnetic. Furthermore, at low temperatures, the critical Hubbard interaction $U_c$ required to induce magnetic order is slightly larger in those systems where the moire structure has caused a band gap opening in the non-interacting picture, although the difference is less than 6%. Mean-field calculations are employed to estimate how such an interaction-induced magnetic order may change the observable single-particle gap sizes.
300 - M. Gurram , S. Omar , S. Zihlmann 2016
We study fully hexagonal boron nitride (hBN)-encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes; thick-hBN flake as a bottom gate dielectric substrat e which masks the charge impurities from SiO2/Si substrate and single-layer thin-hBN flake as a tunnel barrier. Full encapsulation prevents the graphene from coming in contact with any polymer/chemical during the lithography and thus gives homogeneous charge and spin transport properties across different regions of the encapsulated graphene. Further, even with the multiple electrodes in between the injection and the detection electrodes which are in conductivity mismatch regime, we observe spin transport over 12.5 um long distance under the thin-hBN encapsulated graphene channel, demonstrating the clean interface and the pin-hole free nature of the thin-hBN as an efficient tunnel barrier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا