ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden Gibbs random fields model selection using Block Likelihood Information Criterion

69   0   0.0 ( 0 )
 نشر من قبل Jean-Michel Marin
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Performing model selection between Gibbs random fields is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluztion is a doubly intractable problem. This forms a central issue to pick the model that best fits an observed data. We introduce a new approximate version of the Bayesian Information Criterion. We partition the lattice into continuous rectangular blocks and we approximate the probability measure of the hidden Gibbs field by the product of some Gibbs distributions over the blocks. On that basis, we estimate the likelihood and derive the Block Likelihood Information Criterion (BLIC) that answers model choice questions such as the selection of the dependency structure or the number of latent states. We study the performances of BLIC for those questions. In addition, we present a comparison with ABC algorithms to point out that the novel criterion offers a better trade-off between time efficiency and reliable results.

قيم البحث

اقرأ أيضاً

Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisti cated Markov chain Monte Carlo (MCMC) method, the exchange algorithm (Murray et al., 2006), which requires simulations from the likelihood function at each iteration. The purpose of this paper is to consider an approach to dramatically reduce this computational overhead. To this end we introduce a novel class of algorithms which use realizations of the GRF model, simulated offline, at locations specified by a grid that spans the parameter space. This strategy speeds up dramatically the posterior inference, as illustrated on several examples. However, using the pre-computed graphs introduces a noise in the MCMC algorithm, which is no longer exact. We study the theoretical behaviour of the resulting approximate MCMC algorithm and derive convergence bounds using a recent theoretical development on approximate MCMC methods.
This is an up-to-date introduction to, and overview of, marginal likelihood computation for model selection and hypothesis testing. Computing normalizing constants of probability models (or ratio of constants) is a fundamental issue in many applicati ons in statistics, applied mathematics, signal processing and machine learning. This article provides a comprehensive study of the state-of-the-art of the topic. We highlight limitations, benefits, connections and differences among the different techniques. Problems and possible solutions with the use of improper priors are also described. Some of the most relevant methodologies are compared through theoretical comparisons and numerical experiments.
In this paper, we analyze the convergence rate of a collapsed Gibbs sampler for crossed random effects models. Our results apply to a substantially larger range of models than previous works, including models that incorporate missingness mechanism an d unbalanced level data. The theoretical tools involved in our analysis include a connection between relaxation time and autoregression matrix, concentration inequalities, and random matrix theory.
We consider a Bayesian hierarchical version of the normal theory general linear model which is practically relevant in the sense that it is general enough to have many applications and it is not straightforward to sample directly from the correspondi ng posterior distribution. Thus we study a block Gibbs sampler that has the posterior as its invariant distribution. In particular, we establish that the Gibbs sampler converges at a geometric rate. This allows us to establish conditions for a central limit theorem for the ergodic averages used to estimate features of the posterior. Geometric ergodicity is also a key component for using batch means methods to consistently estimate the variance of the asymptotic normal distribution. Together, our results give practitioners the tools to be as confident in inferences based on the observations from the Gibbs sampler as they would be with inferences based on random samples from the posterior. Our theoretical results are illustrated with an application to data on the cost of health plans issued by health maintenance organizations.
141 - HaiYing Wang 2019
The information-based optimal subdata selection (IBOSS) is a computationally efficient method to select informative data points from large data sets through processing full data by columns. However, when the volume of a data set is too large to be pr ocessed in the available memory of a machine, it is infeasible to implement the IBOSS procedure. This paper develops a divide-and-conquer IBOSS approach to solving this problem, in which the full data set is divided into smaller partitions to be loaded into the memory and then subsets of data are selected from each partitions using the IBOSS algorithm. We derive both finite sample properties and asymptotic properties of the resulting estimator. Asymptotic results show that if the full data set is partitioned randomly and the number of partitions is not very large, then the resultant estimator has the same estimation efficiency as the original IBOSS estimator. We also carry out numerical experiments to evaluate the empirical performance of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا