ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient MCMC for Gibbs Random Fields using pre-computation

76   0   0.0 ( 0 )
 نشر من قبل Florian Maire
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisticated Markov chain Monte Carlo (MCMC) method, the exchange algorithm (Murray et al., 2006), which requires simulations from the likelihood function at each iteration. The purpose of this paper is to consider an approach to dramatically reduce this computational overhead. To this end we introduce a novel class of algorithms which use realizations of the GRF model, simulated offline, at locations specified by a grid that spans the parameter space. This strategy speeds up dramatically the posterior inference, as illustrated on several examples. However, using the pre-computed graphs introduces a noise in the MCMC algorithm, which is no longer exact. We study the theoretical behaviour of the resulting approximate MCMC algorithm and derive convergence bounds using a recent theoretical development on approximate MCMC methods.

قيم البحث

اقرأ أيضاً

Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows. To tackle this difficulty, we explore a Gibbs version of the ABC approach that runs component-wise approximate Bayesian computation steps aimed at the corresponding conditional posterior distributions, and based on summary statistics of reduced dimensions. While lacking the standard justifications for the Gibbs sampler, the resulting Markov chain is shown to converge in distribution under some partial independence conditions. The associated stationary distribution can further be shown to be close to the true posterior distribution and some hierarchic
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially high-dimensional state trajectories. We propose to combine PG with a generic and easily implementable SMC approach known as Particle Efficient Importance Sampling (PEIS). By using SMC importance sampling densities which are approximately fully globally adapted to the targeted density of the states, PEIS can substantially improve the mixing and the efficiency of the PG draws from the posterior of the states and the parameters relative to existing PG implementations. The efficiency gains achieved by PEIS are illustrated in PG applications to a univariate stochastic volatility model for asset returns, a non-Gaussian nonlinear local-level model for interest rates, and a multivariate stochastic volatility model for the realized covariance matrix of asset returns.
Modeling binary and categorical data is one of the most commonly encountered tasks of applied statisticians and econometricians. While Bayesian methods in this context have been available for decades now, they often require a high level of familiarit y with Bayesian statistics or suffer from issues such as low sampling efficiency. To contribute to the accessibility of Bayesian models for binary and categorical data, we introduce novel latent variable representations based on Polya Gamma random variables for a range of commonly encountered discrete choice models. From these latent variable representations, new Gibbs sampling algorithms for binary, binomial and multinomial logistic regression models are derived. All models allow for a conditionally Gaussian likelihood representation, rendering extensions to more complex modeling frameworks such as state space models straight-forward. However, sampling efficiency may still be an issue in these data augmentation based estimation frameworks. To counteract this, MCMC boosting strategies are developed and discussed in detail. The merits of our approach are illustrated through extensive simulations and a real data application.
Performing model selection between Gibbs random fields is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. Furthermor e, such unobserved fields cannot be integrated out and the likelihood evaluztion is a doubly intractable problem. This forms a central issue to pick the model that best fits an observed data. We introduce a new approximate version of the Bayesian Information Criterion. We partition the lattice into continuous rectangular blocks and we approximate the probability measure of the hidden Gibbs field by the product of some Gibbs distributions over the blocks. On that basis, we estimate the likelihood and derive the Block Likelihood Information Criterion (BLIC) that answers model choice questions such as the selection of the dependency structure or the number of latent states. We study the performances of BLIC for those questions. In addition, we present a comparison with ABC algorithms to point out that the novel criterion offers a better trade-off between time efficiency and reliable results.
Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each nodes latent position is typically frame d as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy---defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo---that leverages the posterior distributions functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا