ترغب بنشر مسار تعليمي؟ اضغط هنا

Divide-and-Conquer Information-Based Optimal Subdata Selection Algorithm

142   0   0.0 ( 0 )
 نشر من قبل HaiYing Wang
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف HaiYing Wang




اسأل ChatGPT حول البحث

The information-based optimal subdata selection (IBOSS) is a computationally efficient method to select informative data points from large data sets through processing full data by columns. However, when the volume of a data set is too large to be processed in the available memory of a machine, it is infeasible to implement the IBOSS procedure. This paper develops a divide-and-conquer IBOSS approach to solving this problem, in which the full data set is divided into smaller partitions to be loaded into the memory and then subsets of data are selected from each partitions using the IBOSS algorithm. We derive both finite sample properties and asymptotic properties of the resulting estimator. Asymptotic results show that if the full data set is partitioned randomly and the number of partitions is not very large, then the resultant estimator has the same estimation efficiency as the original IBOSS estimator. We also carry out numerical experiments to evaluate the empirical performance of the proposed method.



قيم البحث

اقرأ أيضاً

Advantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.
We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are amenable to the principle of divide and conquer, and study what are its implications in terms of learning. This principle creates a powerful inductive bias that we leverage with neural architectures that are defined recursively and dynamically, by learning two scale-invariant atomic operations: how to split a given input into smaller sets, and how to merge two partially solved tasks into a larger partial solution. Our model can be trained in weakly supervised environments, namely by just observing input-output pairs, and in even weaker environments, using a non-differentiable reward signal. Moreover, thanks to the dynamic aspect of our architecture, we can incorporate the computational complexity as a regularization term that can be optimized by backpropagation. We demonstrate the flexibility and efficiency of the Divide-and-Conquer Network on several combinatorial and geometric tasks: convex hull, clustering, knapsack and euclidean TSP. Thanks to the dynamic programming nature of our model, we show significant improvements in terms of generalization error and computational complexity.
Spectral clustering is one of the most popular clustering methods. However, how to balance the efficiency and effectiveness of the large-scale spectral clustering with limited computing resources has not been properly solved for a long time. In this paper, we propose a divide-and-conquer based large-scale spectral clustering method to strike a good balance between efficiency and effectiveness. In the proposed method, a divide-and-conquer based landmark selection algorithm and a novel approximate similarity matrix approach are designed to construct a sparse similarity matrix within extremely low cost. Then clustering results can be computed quickly through a bipartite graph partition process. The proposed method achieves the lower computational complexity than most existing large-scale spectral clustering. Experimental results on ten large-scale datasets have demonstrated the efficiency and effectiveness of the proposed methods. The MATLAB code of the proposed method and experimental datasets are available at https://github.com/Li-Hongmin/MyPaperWithCode.
Approximate Bayesian Computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool for model ling time dependent, real world phenomena with underlying random effects. When applying ABC to stochastic models, two major difficulties arise. First, the derivation of effective summary statistics and proper distances is particularly challenging, since simulations from the stochastic process under the same parameter configuration result in different trajectories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the intrinsic stochasticity of the model, we propose to build up the statistical method (e.g., the choice of the summary statistics) on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both with simulated data and with real electroencephalography (EEG) data. The proposed ingredients can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterised by an invariant distribution and for which a measure-preserving numerical method can be derived.
In this paper, a parallel structured divide-and-conquer (PSDC) eigensolver is proposed for symmetric tridiagonal matrices based on ScaLAPACK and a parallel structured matrix multiplication algorithm, called PSMMA. Computing the eigenvectors via matri x-matrix multiplications is the most computationally expensive part of the divide-and-conquer algorithm, and one of the matrices involved in such multiplications is a rank-structured Cauchy-like matrix. By exploiting this particular property, PSMMA constructs the local matrices by using generators of Cauchy-like matrices without any communication, and further reduces the computation costs by using a structured low-rank approximation algorithm. Thus, both the communication and computation costs are reduced. Experimental results show that both PSMMA and PSDC are highly scalable and scale to 4096 processes at least. PSDC has better scalability than PHDC that was proposed in [J. Comput. Appl. Math. 344 (2018) 512--520] and only scaled to 300 processes for the same matrices. Comparing with texttt{PDSTEDC} in ScaLAPACK, PSDC is always faster and achieves $1.4$x--$1.6$x speedup for some matrices with few deflations. PSDC is also comparable with ELPA, with PSDC being faster than ELPA when using few processes and a little slower when using many processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا