ﻻ يوجد ملخص باللغة العربية
In this paper we study finite groups which have Cayley isomorphism property with respect to Cayley maps, CIM-groups for a brief. We show that the structure of the CIM-groups is very restricted. It is described in Theorem~ref{111015a} where a short list of possible candidates for CIM-groups is given. Theorem~ref{111015c} provides concrete examples of infinite series of CIM-groups.
A Cayley (di)graph $Cay(G,S)$ of a group $G$ with respect to $S$ is said to be normal if the right regular representation of $G$ is normal in the automorphism group of $Cay(G,S)$, and is called a CI-(di)graph if there is $alphain Aut(G)$ such that $S
Following a problem posed by Lovasz in 1969, it is believed that every connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from groups having a $(2,s,3)$-presentation, that is, for grou
In this paper we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In
We prove an upper bound on the number of pairwise strongly cospectral vertices in a normal Cayley graph, in terms of the multiplicities of its eigenvalues. We use this to determine an explicit bound in Cayley graphs of $mathbb{Z}_2^d$ and $mathbb{Z}_
For every pair of distinct primes $p$, $q$ we prove that $mathbb{Z}_p^3 times mathbb{Z}_q$ is a CI-group with respect to binary relational structures.