ترغب بنشر مسار تعليمي؟ اضغط هنا

Normal Cayley digraphs of dihedral groups with CI-property

93   0   0.0 ( 0 )
 نشر من قبل Yan-Quan Feng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Cayley (di)graph $Cay(G,S)$ of a group $G$ with respect to $S$ is said to be normal if the right regular representation of $G$ is normal in the automorphism group of $Cay(G,S)$, and is called a CI-(di)graph if there is $alphain Aut(G)$ such that $S^alpha=T$, whenever $Cay(G,S)cong Cay(G,T)$ for a Cayley (di)graph $Cay(G,T)$. A finite group $G$ is called a DCI-group or a NDCI-group if all Cayley digraphs or normal Cayley digraphs of $G$ are CI-digraphs, and is called a CI-group or a NCI-group if all Cayley graphs or normal Cayley graphs of $G$ are CI-graphs, respectively. Motivated by a conjecture proposed by Adam in 1967, CI-groups and DCI-groups have been actively studied during the last fifty years by many researchers in algebraic graph theory. It takes about thirty years to obtain the classification of cyclic CI-groups and DCI-groups, and recently, the first two authors, among others, classified cyclic NCI-groups and NDCI-groups. Even though there are many partial results on dihedral CI-groups and DCI-groups, their classification is still elusive. In this paper, we prove that a dihedral group of order $2n$ is a NCI-group or a NDCI-group if and only if $n=2,4$ or $n$ is odd. As a direct consequence, we have that if a dihedral group $D_{2n}$ of order $2n$ is a DCI-group then $n=2$ or $n$ is odd-square-free, and that if $D_{2n}$ is a CI-group then $n=2,9$ or $n$ is odd-square-free, throwing some new light on classification of dihedral CI-groups and DCI-groups.

قيم البحث

اقرأ أيضاً

A Cayley (di)graph $Cay(G,S)$ of a group $G$ with respect to a subset $S$ of $G$ is called normal if the right regular representation of $G$ is a normal subgroup in the full automorphism group of $Cay(G,S)$, and is called a CI-(di)graph if for every $Tsubseteq G$, $Cay(G,S)cong Cay(G,T)$ implies that there is $sigmain Aut(G)$ such that $S^sigma=T$. We call a group $G$ a NDCI-group if all normal Cayley digraphs of $G$ are CI-digraphs, and a NCI-group if all normal Cayley graphs of $G$ are CI-graphs, respectively. In this paper, we prove that a cyclic group of order $n$ is a NDCI-group if and only if $8 mid n$, and is a NCI-group if and only if either $n=8$ or $8 mid n$.
In this paper, we find a strong new restriction on the structure of CI-groups. We show that, if $R$ is a generalised dihedral group and if $R$ is a CI-group, then for every odd prime $p$ the Sylow $p$-subgroup of $R$ has order $p$, or $9$. Consequent ly, any CI-group with quotient a generalised dihedral group has the same restriction, that for every odd prime $p$ the Sylow $p$-subgroup of the group has order $p$, or $9$. We also give a counter example to the conjecture that every BCI-group is a CI-group.
In this paper we study finite groups which have Cayley isomorphism property with respect to Cayley maps, CIM-groups for a brief. We show that the structure of the CIM-groups is very restricted. It is described in Theorem~ref{111015a} where a short li st of possible candidates for CIM-groups is given. Theorem~ref{111015c} provides concrete examples of infinite series of CIM-groups.
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference size of $G$ and is denoted by $Delta[G]$. The fraction $eth[G]:=Delta[G]/{sqrt{|G|}}$ is called the difference characteristic of $G$. We prove that for every $ninmathbb N$ the dihedral group $D_{2n}$ of order $2n$ has the difference characteristic $sqrt{2}leeth[D_{2n}]leqfrac{48}{sqrt{586}}approx1.983$. Moreover, if $nge 2cdot 10^{15}$, then $eth[D_{2n}]<frac{4}{sqrt{6}}approx1.633$. Also we calculate the difference sizes and characteristics of all dihedral groups of cardinality $le80$.
We prove an upper bound on the number of pairwise strongly cospectral vertices in a normal Cayley graph, in terms of the multiplicities of its eigenvalues. We use this to determine an explicit bound in Cayley graphs of $mathbb{Z}_2^d$ and $mathbb{Z}_ 4^d$. We also provide some infinite families of Cayley graphs of $mathbb{Z}_2^d$ with a set of four pairwise strongly cospectral vertices and show that such graphs exist in every dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا