ﻻ يوجد ملخص باللغة العربية
In co-infections, positive feedback between multiple diseases can accelerate outbreaks. In a recent letter Chen, Ghanbarnejad, Cai, and Grassberger (CGCG) introduced a spatially homogeneous mean-field model system for such co-infections, and studied this system numerically with focus on the possible existence of discontinuous phase transitions. We show that their model coincides in mean-field theory with the homogenous limit of the extended general epidemic process (EGEP). Studying the latter analytically, we argue that the discontinuous transition observed by CGCG is basically a spinodal phase transition and not a first-order transition with phase-coexistence. We derive the conditions for this spinodal transition along with predictions for important quantities such as the magnitude of the discontinuity. We also shed light on a true first-order transition with phase-coexistence by discussing the EGEP with spatial inhomogeneities.
Background: The global spread of the severe acute respiratory syndrome (SARS) epidemic has clearly shown the importance of considering the long-range transportation networks in the understanding of emerging diseases outbreaks. The introduction of ext
We study epidemic outbreaks on random Delaunay triangulations by applying Asynchronous SIR (susceptible-infected-removed) model kinetic Monte Carlo dynamics coupled to lattices extracted from the triangulations. In order to investigate the critical b
A framework is presented for carrying out simulations of equilibrium systems in the microcanonical ensemble using annealing in an energy ceiling. The framework encompasses an equilibrium version of simulated annealing, population annealing and hybrid
In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether a disease will eventually infect a large fraction of a population. Because network structure typically changes in time, which fundamen
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im